Beint í aðalefni
Stuðull
Tick mark Image
Meta
Tick mark Image
Graf

Svipuð vandamál úr vefleit

Deila

x\left(6x-5\right)
Taktu x út fyrir sviga.
6x^{2}-5x=0
Þætta má margliðu með færslunni ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), þar sem x_{1} og x_{2} eru rætur annars stigs jöfnunnar ax^{2}+bx+c=0.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}}}{2\times 6}
Allar jöfnur eyðublaðsins ax^{2}+bx+c=0 má leysa með annars stigs formúlunni: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Annars stigs formúlan veitir tvær lausnir, eina þegar ± er bætt við og eina þegar það er dregið frá.
x=\frac{-\left(-5\right)±5}{2\times 6}
Finndu kvaðratrót \left(-5\right)^{2}.
x=\frac{5±5}{2\times 6}
Gagnstæð tala tölunnar -5 er 5.
x=\frac{5±5}{12}
Margfaldaðu 2 sinnum 6.
x=\frac{10}{12}
Leystu nú jöfnuna x=\frac{5±5}{12} þegar ± er plús. Leggðu 5 saman við 5.
x=\frac{5}{6}
Minnka brotið \frac{10}{12} eins mikið og hægt er með því að draga og stytta út 2.
x=\frac{0}{12}
Leystu nú jöfnuna x=\frac{5±5}{12} þegar ± er mínus. Dragðu 5 frá 5.
x=0
Deildu 0 með 12.
6x^{2}-5x=6\left(x-\frac{5}{6}\right)x
Þættu upprunalegu segðina með ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Skiptu \frac{5}{6} út fyrir x_{1} og 0 út fyrir x_{2}.
6x^{2}-5x=6\times \frac{6x-5}{6}x
Dragðu \frac{5}{6} frá x með því að finna samnefnara og draga teljarana frá. Minnkaðu svo brotið eins mikið og hægt er.
6x^{2}-5x=\left(6x-5\right)x
Styttu út stærsta sameiginlega þáttinn 6 í 6 og 6.