Leystu fyrir k
k=\frac{6^{x}+24}{16}
Leystu fyrir x (complex solution)
x=\log_{6}\left(16k-24\right)+\frac{2\pi n_{1}i}{\ln(6)}
n_{1}\in \mathrm{Z}
k\neq \frac{3}{2}
Leystu fyrir x
x=\log_{6}\left(16k-24\right)
k>\frac{3}{2}
Graf
Deila
Afritað á klemmuspjald
6^{x}-8\left(-3+2k\right)=0
Margfaldaðu 4 og 2 til að fá út 8.
6^{x}+24-16k=0
Notaðu dreifieiginleika til að margfalda -8 með -3+2k.
24-16k=-6^{x}
Dragðu 6^{x} frá báðum hliðum. Allt sem dregið er frá núlli skilar sjálfu sér sem mínustölu.
-16k=-6^{x}-24
Dragðu 24 frá báðum hliðum.
\frac{-16k}{-16}=\frac{-6^{x}-24}{-16}
Deildu báðum hliðum með -16.
k=\frac{-6^{x}-24}{-16}
Að deila með -16 afturkallar margföldun með -16.
k=\frac{6^{x}}{16}+\frac{3}{2}
Deildu -6^{x}-24 með -16.
Dæmi
Annars stigs jafna
{ x } ^ { 2 } - 4 x - 5 = 0
Hornafræði
4 \sin \theta \cos \theta = 2 \sin \theta
Línuleg jafna
y = 3x + 4
Reikningslistarinnar
699 * 533
Uppistöðuefni
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtímis jafna
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Aðgreining
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Heildun
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Takmörk
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}