Stuðull
4\left(4x^{2}-2x+5\right)
Meta
16x^{2}-8x+20
Graf
Deila
Afritað á klemmuspjald
4\left(4x^{2}-2x+5\right)
Taktu 4 út fyrir sviga. Margliðan 4x^{2}-2x+5 hefur ekki verið þáttuð þar sem hún er ekki með neinar ræðar rætur.
16x^{2}-8x+20=0
Þætta má margliðu með færslunni ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), þar sem x_{1} og x_{2} eru rætur annars stigs jöfnunnar ax^{2}+bx+c=0.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 16\times 20}}{2\times 16}
Allar jöfnur eyðublaðsins ax^{2}+bx+c=0 má leysa með annars stigs formúlunni: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Annars stigs formúlan veitir tvær lausnir, eina þegar ± er bætt við og eina þegar það er dregið frá.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 16\times 20}}{2\times 16}
Hefðu -8 í annað veldi.
x=\frac{-\left(-8\right)±\sqrt{64-64\times 20}}{2\times 16}
Margfaldaðu -4 sinnum 16.
x=\frac{-\left(-8\right)±\sqrt{64-1280}}{2\times 16}
Margfaldaðu -64 sinnum 20.
x=\frac{-\left(-8\right)±\sqrt{-1216}}{2\times 16}
Leggðu 64 saman við -1280.
16x^{2}-8x+20
Þar sem kvaðratrót neikvæðar tölu er ekki skilgreind í reit rauntölu eru engar lausnir. Ekki er hægt að þátta annars stigs margliðu.
Dæmi
Annars stigs jafna
{ x } ^ { 2 } - 4 x - 5 = 0
Hornafræði
4 \sin \theta \cos \theta = 2 \sin \theta
Línuleg jafna
y = 3x + 4
Reikningslistarinnar
699 * 533
Uppistöðuefni
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtímis jafna
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Aðgreining
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Heildun
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Takmörk
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}