Beint í aðalefni
Leystu fyrir x, y
Tick mark Image
Leystu fyrir x, y (complex solution)
Tick mark Image
Graf

Svipuð vandamál úr vefleit

Deila

y=mx-2m+\sqrt{2}
Íhugaðu aðra jöfnuna. Notaðu dreifieiginleika til að margfalda m með x-2.
x^{2}+2\left(mx-2m+\sqrt{2}\right)^{2}=8
Settu mx-2m+\sqrt{2} inn fyrir y í hinni jöfnunni, x^{2}+2y^{2}=8.
x^{2}+2\left(m^{2}x^{2}+2m\left(-2m+\sqrt{2}\right)x+\left(-2m+\sqrt{2}\right)^{2}\right)=8
Hefðu mx-2m+\sqrt{2} í annað veldi.
x^{2}+2m^{2}x^{2}+4m\left(-2m+\sqrt{2}\right)x+2\left(-2m+\sqrt{2}\right)^{2}=8
Margfaldaðu 2 sinnum m^{2}x^{2}+2m\left(-2m+\sqrt{2}\right)x+\left(-2m+\sqrt{2}\right)^{2}.
\left(2m^{2}+1\right)x^{2}+4m\left(-2m+\sqrt{2}\right)x+2\left(-2m+\sqrt{2}\right)^{2}=8
Leggðu x^{2} saman við 2m^{2}x^{2}.
\left(2m^{2}+1\right)x^{2}+4m\left(-2m+\sqrt{2}\right)x+2\left(-2m+\sqrt{2}\right)^{2}-8=0
Dragðu 8 frá báðum hliðum jöfnunar.
x=\frac{-4m\left(-2m+\sqrt{2}\right)±\sqrt{\left(4m\left(-2m+\sqrt{2}\right)\right)^{2}-4\left(2m^{2}+1\right)\left(8m^{2}-8\sqrt{2}m-4\right)}}{2\left(2m^{2}+1\right)}
Jafnan er í staðalformi: ax^{2}+bx+c=0. Settu 1+2m^{2} inn fyrir a, 2\times 2m\left(-2m+\sqrt{2}\right) inn fyrir b og -4+8m^{2}-8m\sqrt{2} inn fyrir c í annars stigs formúlunni \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4m\left(-2m+\sqrt{2}\right)±\sqrt{16m^{2}\left(-2m+\sqrt{2}\right)^{2}-4\left(2m^{2}+1\right)\left(8m^{2}-8\sqrt{2}m-4\right)}}{2\left(2m^{2}+1\right)}
Hefðu 2\times 2m\left(-2m+\sqrt{2}\right) í annað veldi.
x=\frac{-4m\left(-2m+\sqrt{2}\right)±\sqrt{16m^{2}\left(-2m+\sqrt{2}\right)^{2}+\left(-8m^{2}-4\right)\left(8m^{2}-8\sqrt{2}m-4\right)}}{2\left(2m^{2}+1\right)}
Margfaldaðu -4 sinnum 1+2m^{2}.
x=\frac{-4m\left(-2m+\sqrt{2}\right)±\sqrt{16m^{2}\left(-2m+\sqrt{2}\right)^{2}-64m^{4}+64\sqrt{2}m^{3}+32\sqrt{2}m+16}}{2\left(2m^{2}+1\right)}
Margfaldaðu -4-8m^{2} sinnum -4+8m^{2}-8m\sqrt{2}.
x=\frac{-4m\left(-2m+\sqrt{2}\right)±\sqrt{32m^{2}+32\sqrt{2}m+16}}{2\left(2m^{2}+1\right)}
Leggðu 16m^{2}\left(-2m+\sqrt{2}\right)^{2} saman við 16+32m\sqrt{2}-64m^{4}+64m^{3}\sqrt{2}.
x=\frac{-4m\left(-2m+\sqrt{2}\right)±4\sqrt{2m^{2}+2\sqrt{2}m+1}}{2\left(2m^{2}+1\right)}
Finndu kvaðratrót 16+32m^{2}+32m\sqrt{2}.
x=\frac{-4m\left(-2m+\sqrt{2}\right)±4\sqrt{2m^{2}+2\sqrt{2}m+1}}{4m^{2}+2}
Margfaldaðu 2 sinnum 1+2m^{2}.
x=\frac{-4m\left(-2m+\sqrt{2}\right)+4\sqrt{2m^{2}+2\sqrt{2}m+1}}{4m^{2}+2}
Leystu nú jöfnuna x=\frac{-4m\left(-2m+\sqrt{2}\right)±4\sqrt{2m^{2}+2\sqrt{2}m+1}}{4m^{2}+2} þegar ± er plús. Leggðu -4m\left(-2m+\sqrt{2}\right) saman við 4\sqrt{1+2m^{2}+2m\sqrt{2}}.
x=\frac{2\left(2m^{2}+\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}
Deildu -4m\left(-2m+\sqrt{2}\right)+4\sqrt{1+2m^{2}+2m\sqrt{2}} með 2+4m^{2}.
x=\frac{8m^{2}-4\sqrt{2m^{2}+2\sqrt{2}m+1}-4\sqrt{2}m}{4m^{2}+2}
Leystu nú jöfnuna x=\frac{-4m\left(-2m+\sqrt{2}\right)±4\sqrt{2m^{2}+2\sqrt{2}m+1}}{4m^{2}+2} þegar ± er mínus. Dragðu 4\sqrt{1+2m^{2}+2m\sqrt{2}} frá -4m\left(-2m+\sqrt{2}\right).
x=\frac{2\left(2m^{2}-\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}
Deildu 8m^{2}-4m\sqrt{2}-4\sqrt{1+2m^{2}+2m\sqrt{2}} með 2+4m^{2}.
y=m\times \frac{2\left(2m^{2}+\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}-2m+\sqrt{2}
Hægt er að leysa x á tvenna vegu: \frac{2\left(2m^{2}-m\sqrt{2}+\sqrt{2m^{2}+1+2m\sqrt{2}}\right)}{1+2m^{2}} og \frac{2\left(2m^{2}-m\sqrt{2}-\sqrt{2m^{2}+1+2m\sqrt{2}}\right)}{1+2m^{2}}. Skiptu \frac{2\left(2m^{2}-m\sqrt{2}+\sqrt{2m^{2}+1+2m\sqrt{2}}\right)}{1+2m^{2}} út fyrir x í jöfnunni y=mx-2m+\sqrt{2} til að finna samsvarandi lausn fyrir y sem uppfyllir báðar jöfnur.
y=\frac{2\left(2m^{2}+\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}m-2m+\sqrt{2}
Margfaldaðu m sinnum \frac{2\left(2m^{2}-m\sqrt{2}+\sqrt{2m^{2}+1+2m\sqrt{2}}\right)}{1+2m^{2}}.
y=m\times \frac{2\left(2m^{2}-\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}-2m+\sqrt{2}
Settu núna \frac{2\left(2m^{2}-m\sqrt{2}-\sqrt{2m^{2}+1+2m\sqrt{2}}\right)}{1+2m^{2}} inn fyrir x í jöfnunni y=mx-2m+\sqrt{2} og leystu hana til að finna samsvarandi lausn fyrir y sem uppfyllir báðar jöfnur.
y=\frac{2\left(2m^{2}-\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}m-2m+\sqrt{2}
Margfaldaðu m sinnum \frac{2\left(2m^{2}-m\sqrt{2}-\sqrt{2m^{2}+1+2m\sqrt{2}}\right)}{1+2m^{2}}.
y=\frac{2\left(2m^{2}+\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}m-2m+\sqrt{2},x=\frac{2\left(2m^{2}+\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}\text{ or }y=\frac{2\left(2m^{2}-\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}m-2m+\sqrt{2},x=\frac{2\left(2m^{2}-\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}
Leyst var úr kerfinu.