Leystu fyrir x, y
x=\frac{2\left(2m^{2}-\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}\text{, }y=\frac{\sqrt{2}\left(-2m|\frac{\sqrt{2}\left(\sqrt{2}m+1\right)}{2}|-\sqrt{2}m+1\right)}{2m^{2}+1}
x=\frac{2\left(2m^{2}+\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}\text{, }y=\frac{\sqrt{2}\left(2m|\frac{\sqrt{2}\left(\sqrt{2}m+1\right)}{2}|-\sqrt{2}m+1\right)}{2m^{2}+1}
Leystu fyrir x, y (complex solution)
\left\{\begin{matrix}x=\frac{2\left(2m^{2}-\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}\text{, }y=\frac{\sqrt{2}\left(-m\sqrt{2\left(\sqrt{2}m+1\right)^{2}}-\sqrt{2}m+1\right)}{2m^{2}+1}\text{; }x=\frac{2\left(2m^{2}+\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}\text{, }y=\frac{\sqrt{2}\left(m\sqrt{2\left(\sqrt{2}m+1\right)^{2}}-\sqrt{2}m+1\right)}{2m^{2}+1}\text{, }&m\neq -\frac{\sqrt{2}i}{2}\text{ and }m\neq \frac{\sqrt{2}i}{2}\\x=-\frac{\left(-2m+\sqrt{2}\right)^{2}-4}{2m\left(-2m+\sqrt{2}\right)}\text{, }y=\frac{2m^{2}-2\sqrt{2}m+3}{-2m+\sqrt{2}}\text{, }&m=-\frac{\sqrt{2}i}{2}\text{ or }m=\frac{\sqrt{2}i}{2}\end{matrix}\right.
Graf
Deila
Afritað á klemmuspjald
y=mx-2m+\sqrt{2}
Íhugaðu aðra jöfnuna. Notaðu dreifieiginleika til að margfalda m með x-2.
x^{2}+2\left(mx-2m+\sqrt{2}\right)^{2}=8
Settu mx-2m+\sqrt{2} inn fyrir y í hinni jöfnunni, x^{2}+2y^{2}=8.
x^{2}+2\left(m^{2}x^{2}+2m\left(-2m+\sqrt{2}\right)x+\left(-2m+\sqrt{2}\right)^{2}\right)=8
Hefðu mx-2m+\sqrt{2} í annað veldi.
x^{2}+2m^{2}x^{2}+4m\left(-2m+\sqrt{2}\right)x+2\left(-2m+\sqrt{2}\right)^{2}=8
Margfaldaðu 2 sinnum m^{2}x^{2}+2m\left(-2m+\sqrt{2}\right)x+\left(-2m+\sqrt{2}\right)^{2}.
\left(2m^{2}+1\right)x^{2}+4m\left(-2m+\sqrt{2}\right)x+2\left(-2m+\sqrt{2}\right)^{2}=8
Leggðu x^{2} saman við 2m^{2}x^{2}.
\left(2m^{2}+1\right)x^{2}+4m\left(-2m+\sqrt{2}\right)x+2\left(-2m+\sqrt{2}\right)^{2}-8=0
Dragðu 8 frá báðum hliðum jöfnunar.
x=\frac{-4m\left(-2m+\sqrt{2}\right)±\sqrt{\left(4m\left(-2m+\sqrt{2}\right)\right)^{2}-4\left(2m^{2}+1\right)\left(8m^{2}-8\sqrt{2}m-4\right)}}{2\left(2m^{2}+1\right)}
Jafnan er í staðalformi: ax^{2}+bx+c=0. Settu 1+2m^{2} inn fyrir a, 2\times 2m\left(-2m+\sqrt{2}\right) inn fyrir b og -4+8m^{2}-8m\sqrt{2} inn fyrir c í annars stigs formúlunni \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4m\left(-2m+\sqrt{2}\right)±\sqrt{16m^{2}\left(-2m+\sqrt{2}\right)^{2}-4\left(2m^{2}+1\right)\left(8m^{2}-8\sqrt{2}m-4\right)}}{2\left(2m^{2}+1\right)}
Hefðu 2\times 2m\left(-2m+\sqrt{2}\right) í annað veldi.
x=\frac{-4m\left(-2m+\sqrt{2}\right)±\sqrt{16m^{2}\left(-2m+\sqrt{2}\right)^{2}+\left(-8m^{2}-4\right)\left(8m^{2}-8\sqrt{2}m-4\right)}}{2\left(2m^{2}+1\right)}
Margfaldaðu -4 sinnum 1+2m^{2}.
x=\frac{-4m\left(-2m+\sqrt{2}\right)±\sqrt{16m^{2}\left(-2m+\sqrt{2}\right)^{2}-64m^{4}+64\sqrt{2}m^{3}+32\sqrt{2}m+16}}{2\left(2m^{2}+1\right)}
Margfaldaðu -4-8m^{2} sinnum -4+8m^{2}-8m\sqrt{2}.
x=\frac{-4m\left(-2m+\sqrt{2}\right)±\sqrt{32m^{2}+32\sqrt{2}m+16}}{2\left(2m^{2}+1\right)}
Leggðu 16m^{2}\left(-2m+\sqrt{2}\right)^{2} saman við 16+32m\sqrt{2}-64m^{4}+64m^{3}\sqrt{2}.
x=\frac{-4m\left(-2m+\sqrt{2}\right)±4\sqrt{2m^{2}+2\sqrt{2}m+1}}{2\left(2m^{2}+1\right)}
Finndu kvaðratrót 16+32m^{2}+32m\sqrt{2}.
x=\frac{-4m\left(-2m+\sqrt{2}\right)±4\sqrt{2m^{2}+2\sqrt{2}m+1}}{4m^{2}+2}
Margfaldaðu 2 sinnum 1+2m^{2}.
x=\frac{-4m\left(-2m+\sqrt{2}\right)+4\sqrt{2m^{2}+2\sqrt{2}m+1}}{4m^{2}+2}
Leystu nú jöfnuna x=\frac{-4m\left(-2m+\sqrt{2}\right)±4\sqrt{2m^{2}+2\sqrt{2}m+1}}{4m^{2}+2} þegar ± er plús. Leggðu -4m\left(-2m+\sqrt{2}\right) saman við 4\sqrt{1+2m^{2}+2m\sqrt{2}}.
x=\frac{2\left(2m^{2}+\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}
Deildu -4m\left(-2m+\sqrt{2}\right)+4\sqrt{1+2m^{2}+2m\sqrt{2}} með 2+4m^{2}.
x=\frac{8m^{2}-4\sqrt{2m^{2}+2\sqrt{2}m+1}-4\sqrt{2}m}{4m^{2}+2}
Leystu nú jöfnuna x=\frac{-4m\left(-2m+\sqrt{2}\right)±4\sqrt{2m^{2}+2\sqrt{2}m+1}}{4m^{2}+2} þegar ± er mínus. Dragðu 4\sqrt{1+2m^{2}+2m\sqrt{2}} frá -4m\left(-2m+\sqrt{2}\right).
x=\frac{2\left(2m^{2}-\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}
Deildu 8m^{2}-4m\sqrt{2}-4\sqrt{1+2m^{2}+2m\sqrt{2}} með 2+4m^{2}.
y=m\times \frac{2\left(2m^{2}+\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}-2m+\sqrt{2}
Hægt er að leysa x á tvenna vegu: \frac{2\left(2m^{2}-m\sqrt{2}+\sqrt{2m^{2}+1+2m\sqrt{2}}\right)}{1+2m^{2}} og \frac{2\left(2m^{2}-m\sqrt{2}-\sqrt{2m^{2}+1+2m\sqrt{2}}\right)}{1+2m^{2}}. Skiptu \frac{2\left(2m^{2}-m\sqrt{2}+\sqrt{2m^{2}+1+2m\sqrt{2}}\right)}{1+2m^{2}} út fyrir x í jöfnunni y=mx-2m+\sqrt{2} til að finna samsvarandi lausn fyrir y sem uppfyllir báðar jöfnur.
y=\frac{2\left(2m^{2}+\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}m-2m+\sqrt{2}
Margfaldaðu m sinnum \frac{2\left(2m^{2}-m\sqrt{2}+\sqrt{2m^{2}+1+2m\sqrt{2}}\right)}{1+2m^{2}}.
y=m\times \frac{2\left(2m^{2}-\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}-2m+\sqrt{2}
Settu núna \frac{2\left(2m^{2}-m\sqrt{2}-\sqrt{2m^{2}+1+2m\sqrt{2}}\right)}{1+2m^{2}} inn fyrir x í jöfnunni y=mx-2m+\sqrt{2} og leystu hana til að finna samsvarandi lausn fyrir y sem uppfyllir báðar jöfnur.
y=\frac{2\left(2m^{2}-\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}m-2m+\sqrt{2}
Margfaldaðu m sinnum \frac{2\left(2m^{2}-m\sqrt{2}-\sqrt{2m^{2}+1+2m\sqrt{2}}\right)}{1+2m^{2}}.
y=\frac{2\left(2m^{2}+\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}m-2m+\sqrt{2},x=\frac{2\left(2m^{2}+\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}\text{ or }y=\frac{2\left(2m^{2}-\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}m-2m+\sqrt{2},x=\frac{2\left(2m^{2}-\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}
Leyst var úr kerfinu.
Dæmi
Annars stigs jafna
{ x } ^ { 2 } - 4 x - 5 = 0
Hornafræði
4 \sin \theta \cos \theta = 2 \sin \theta
Línuleg jafna
y = 3x + 4
Reikningslistarinnar
699 * 533
Uppistöðuefni
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtímis jafna
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Aðgreining
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Heildun
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Takmörk
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}