Leystu fyrir x
\left\{\begin{matrix}x=-\frac{gy_{1}-fx_{1}}{y_{1}+f}\text{, }&y_{1}\neq -f\\x\in \mathrm{R}\text{, }&\left(y_{1}=0\text{ and }f=0\right)\text{ or }\left(x_{1}=-g\text{ and }y_{1}=-f\right)\end{matrix}\right.
Graf
Deila
Afritað á klemmuspjald
\left(-y_{1}\right)x_{1}+\left(-y_{1}\right)g=\left(x-x_{1}\right)\left(y_{1}+f\right)
Notaðu dreifieiginleika til að margfalda -y_{1} með x_{1}+g.
\left(-y_{1}\right)x_{1}+\left(-y_{1}\right)g=xy_{1}+xf-x_{1}y_{1}-x_{1}f
Notaðu dreifieiginleika til að margfalda x-x_{1} með y_{1}+f.
xy_{1}+xf-x_{1}y_{1}-x_{1}f=\left(-y_{1}\right)x_{1}+\left(-y_{1}\right)g
Skipta um hliðar svo allir liðir breytunnar séu vinstra megin.
xy_{1}+xf-x_{1}f=\left(-y_{1}\right)x_{1}+\left(-y_{1}\right)g+x_{1}y_{1}
Bættu x_{1}y_{1} við báðar hliðar.
xy_{1}+xf=\left(-y_{1}\right)x_{1}+\left(-y_{1}\right)g+x_{1}y_{1}+x_{1}f
Bættu x_{1}f við báðar hliðar.
xy_{1}+xf=-y_{1}g+x_{1}f
Sameinaðu -y_{1}x_{1} og x_{1}y_{1} til að fá 0.
\left(y_{1}+f\right)x=-y_{1}g+x_{1}f
Sameinaðu alla liði sem innihalda x.
\left(y_{1}+f\right)x=fx_{1}-gy_{1}
Jafnan er í staðalformi.
\frac{\left(y_{1}+f\right)x}{y_{1}+f}=\frac{fx_{1}-gy_{1}}{y_{1}+f}
Deildu báðum hliðum með y_{1}+f.
x=\frac{fx_{1}-gy_{1}}{y_{1}+f}
Að deila með y_{1}+f afturkallar margföldun með y_{1}+f.
Dæmi
Annars stigs jafna
{ x } ^ { 2 } - 4 x - 5 = 0
Hornafræði
4 \sin \theta \cos \theta = 2 \sin \theta
Línuleg jafna
y = 3x + 4
Reikningslistarinnar
699 * 533
Uppistöðuefni
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtímis jafna
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Aðgreining
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Heildun
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Takmörk
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}