\left\{ \begin{array} { l } { x + y - 3 z + t = 2 c } \\ { 3 x - y + z - t = 2 a } \\ { - x + 3 y - z + t = 2 b } \end{array} \right.
Leystu fyrir x, y, z
x=\frac{t+b+c+4a}{6}
y=\frac{-t+2a+5b-c}{6}
z=\frac{t+a+b-2c}{3}
Spurningakeppni
\left\{ \begin{array} { l } { x + y - 3 z + t = 2 c } \\ { 3 x - y + z - t = 2 a } \\ { - x + 3 y - z + t = 2 b } \end{array} \right.
Deila
Afritað á klemmuspjald
x=-y+3z-t+2c
Leystu x+y-3z+t=2c fyrir x.
3\left(-y+3z-t+2c\right)-y+z-t=2a -\left(-y+3z-t+2c\right)+3y-z+t=2b
Settu -y+3z-t+2c inn fyrir x í annarri og þriðju jöfnu.
y=-t+\frac{5}{2}z-\frac{1}{2}a+\frac{3}{2}c z=y-\frac{1}{2}b-\frac{1}{2}c+\frac{1}{2}t
Leystu þessar jöfnur fyrir y og z í þessari röð.
z=-t+\frac{5}{2}z-\frac{1}{2}a+\frac{3}{2}c-\frac{1}{2}b-\frac{1}{2}c+\frac{1}{2}t
Settu -t+\frac{5}{2}z-\frac{1}{2}a+\frac{3}{2}c inn fyrir y í hinni jöfnunni z=y-\frac{1}{2}b-\frac{1}{2}c+\frac{1}{2}t.
z=\frac{1}{3}t-\frac{2}{3}c+\frac{1}{3}a+\frac{1}{3}b
Leystu z=-t+\frac{5}{2}z-\frac{1}{2}a+\frac{3}{2}c-\frac{1}{2}b-\frac{1}{2}c+\frac{1}{2}t fyrir z.
y=-t+\frac{5}{2}\left(\frac{1}{3}t-\frac{2}{3}c+\frac{1}{3}a+\frac{1}{3}b\right)-\frac{1}{2}a+\frac{3}{2}c
Settu \frac{1}{3}t-\frac{2}{3}c+\frac{1}{3}a+\frac{1}{3}b inn fyrir z í hinni jöfnunni y=-t+\frac{5}{2}z-\frac{1}{2}a+\frac{3}{2}c.
y=-\frac{1}{6}t-\frac{1}{6}c+\frac{1}{3}a+\frac{5}{6}b
Reiknaðu y frá y=-t+\frac{5}{2}\left(\frac{1}{3}t-\frac{2}{3}c+\frac{1}{3}a+\frac{1}{3}b\right)-\frac{1}{2}a+\frac{3}{2}c.
x=-\left(-\frac{1}{6}t-\frac{1}{6}c+\frac{1}{3}a+\frac{5}{6}b\right)+3\left(\frac{1}{3}t-\frac{2}{3}c+\frac{1}{3}a+\frac{1}{3}b\right)-t+2c
Settu -\frac{1}{6}t-\frac{1}{6}c+\frac{1}{3}a+\frac{5}{6}b inn fyrir y og \frac{1}{3}t-\frac{2}{3}c+\frac{1}{3}a+\frac{1}{3}b fyrir z í jöfnunni x=-y+3z-t+2c.
x=\frac{1}{6}t+\frac{1}{6}c+\frac{2}{3}a+\frac{1}{6}b
Reiknaðu x frá x=-\left(-\frac{1}{6}t-\frac{1}{6}c+\frac{1}{3}a+\frac{5}{6}b\right)+3\left(\frac{1}{3}t-\frac{2}{3}c+\frac{1}{3}a+\frac{1}{3}b\right)-t+2c.
x=\frac{1}{6}t+\frac{1}{6}c+\frac{2}{3}a+\frac{1}{6}b y=-\frac{1}{6}t-\frac{1}{6}c+\frac{1}{3}a+\frac{5}{6}b z=\frac{1}{3}t-\frac{2}{3}c+\frac{1}{3}a+\frac{1}{3}b
Leyst var úr kerfinu.
Dæmi
Annars stigs jafna
{ x } ^ { 2 } - 4 x - 5 = 0
Hornafræði
4 \sin \theta \cos \theta = 2 \sin \theta
Línuleg jafna
y = 3x + 4
Reikningslistarinnar
699 * 533
Uppistöðuefni
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtímis jafna
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Aðgreining
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Heildun
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Takmörk
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}