Beint í aðalefni
Leystu fyrir x, y
Tick mark Image
Graf

Svipuð vandamál úr vefleit

Deila

2x+y-5=0,x-2y=0
Til að leysa jöfnupar með innsetningu skal fyrst leysa eina jöfnuna fyrir eina breytuna. Síðan skal setja niðurstöðuna inn fyrir breytuna í hinni jöfnunni.
2x+y-5=0
Veldu eina jöfnuna og leystu x með því að einangra x vinstra megin við samasemmerkið.
2x+y=5
Leggðu 5 saman við báðar hliðar jöfnunar.
2x=-y+5
Dragðu y frá báðum hliðum jöfnunar.
x=\frac{1}{2}\left(-y+5\right)
Deildu báðum hliðum með 2.
x=-\frac{1}{2}y+\frac{5}{2}
Margfaldaðu \frac{1}{2} sinnum -y+5.
-\frac{1}{2}y+\frac{5}{2}-2y=0
Settu \frac{-y+5}{2} inn fyrir x í hinni jöfnunni, x-2y=0.
-\frac{5}{2}y+\frac{5}{2}=0
Leggðu -\frac{y}{2} saman við -2y.
-\frac{5}{2}y=-\frac{5}{2}
Dragðu \frac{5}{2} frá báðum hliðum jöfnunar.
y=1
Deildu í báðar hliðar jöfnunar með -\frac{5}{2}. Þetta skilar sömu niðurstöðu og að margfalda báðar hliðar með margföldunarandhverfu brotsins.
x=\frac{-1+5}{2}
Skiptu 1 út fyrir y í x=-\frac{1}{2}y+\frac{5}{2}. Þar sem jafnan sem af þessu leiðir inniheldur einungis eina breytu geturðu leyst x strax.
x=2
Leggðu \frac{5}{2} saman við -\frac{1}{2} með því að finna samnefnara og leggja teljarana saman. Minnkaðu því næst brotið um lægsta mögulega lið.
x=2,y=1
Leyst var úr kerfinu.
2x+y-5=0,x-2y=0
Settu jöfnurnar í staðlað form og notaðu svo fylki til að leysa jöfnuhneppið.
\left(\begin{matrix}2&1\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\0\end{matrix}\right)
Skrifaðu jöfnurnar á fylkjaformi.
inverse(\left(\begin{matrix}2&1\\1&-2\end{matrix}\right))\left(\begin{matrix}2&1\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&-2\end{matrix}\right))\left(\begin{matrix}5\\0\end{matrix}\right)
Margfaldaðu vinstri hlið jöfnunnar með andhverfu fylkis \left(\begin{matrix}2&1\\1&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&-2\end{matrix}\right))\left(\begin{matrix}5\\0\end{matrix}\right)
Margfeldi fylkis og andhverfu þess er einingarfylki.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&-2\end{matrix}\right))\left(\begin{matrix}5\\0\end{matrix}\right)
Margfaldaðu fylkin vinstra megin við samasemmerkið.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{2\left(-2\right)-1}&-\frac{1}{2\left(-2\right)-1}\\-\frac{1}{2\left(-2\right)-1}&\frac{2}{2\left(-2\right)-1}\end{matrix}\right)\left(\begin{matrix}5\\0\end{matrix}\right)
Fyrir 2\times 2-fylkið \left(\begin{matrix}a&b\\c&d\end{matrix}\right) er andhverfa fylkið \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), þannig að hægt er að endurrita fylkisjöfnuna sem fylkismargföldunardæmi.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}&\frac{1}{5}\\\frac{1}{5}&-\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}5\\0\end{matrix}\right)
Reiknaðu.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}\times 5\\\frac{1}{5}\times 5\end{matrix}\right)
Margfaldaðu fylkin.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\1\end{matrix}\right)
Reiknaðu.
x=2,y=1
Dragðu út stuðul fylkjanna x og y.
2x+y-5=0,x-2y=0
Til að nota útilokun við lausn verða stuðlar einnar breytunnar að vera eins í báðum jöfnunum til að breytan núllist út þegar ein jafna er dregin frá annarri.
2x+y-5=0,2x+2\left(-2\right)y=0
Til að gera 2x og x jafnt skal margfalda alla liði á hverri hlið fyrstu jöfnunnar með 1 og alla liði á hverri hlið annarrar jöfnunnar með 2.
2x+y-5=0,2x-4y=0
Einfaldaðu.
2x-2x+y+4y-5=0
Dragðu 2x-4y=0 frá 2x+y-5=0 með því að draga frá líka liði sitt hvorum megin við samasemmerkið.
y+4y-5=0
Leggðu 2x saman við -2x. Liðirnir 2x og -2x núlla hvorn annan út, sem skilur eftir jöfnu með einungis eina breytu sem hægt er að leysa.
5y-5=0
Leggðu y saman við 4y.
5y=5
Leggðu 5 saman við báðar hliðar jöfnunar.
y=1
Deildu báðum hliðum með 5.
x-2=0
Skiptu 1 út fyrir y í x-2y=0. Þar sem jafnan sem af þessu leiðir inniheldur einungis eina breytu geturðu leyst x strax.
x=2
Leggðu 2 saman við báðar hliðar jöfnunar.
x=2,y=1
Leyst var úr kerfinu.