Beint í aðalefni
Meta
Tick mark Image
Diffra með hliðsjón af x
Tick mark Image

Svipuð vandamál úr vefleit

Deila

\int x^{5}+2x^{4}-5x^{2}\mathrm{d}x
Notaðu dreifieiginleika til að margfalda x^{2} með x^{3}+2x^{2}-5.
\int x^{5}\mathrm{d}x+\int 2x^{4}\mathrm{d}x+\int -5x^{2}\mathrm{d}x
Samþættu samtölu hugtak eftir hugtak.
\int x^{5}\mathrm{d}x+2\int x^{4}\mathrm{d}x-5\int x^{2}\mathrm{d}x
Þáttaðu fasta hvers hugtaks.
\frac{x^{6}}{6}+2\int x^{4}\mathrm{d}x-5\int x^{2}\mathrm{d}x
Frá \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} fyrir k\neq -1, skipta \int x^{5}\mathrm{d}x út fyrir \frac{x^{6}}{6}.
\frac{x^{6}}{6}+\frac{2x^{5}}{5}-5\int x^{2}\mathrm{d}x
Frá \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} fyrir k\neq -1, skipta \int x^{4}\mathrm{d}x út fyrir \frac{x^{5}}{5}. Margfaldaðu 2 sinnum \frac{x^{5}}{5}.
\frac{x^{6}}{6}+\frac{2x^{5}}{5}-\frac{5x^{3}}{3}
Frá \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} fyrir k\neq -1, skipta \int x^{2}\mathrm{d}x út fyrir \frac{x^{3}}{3}. Margfaldaðu -5 sinnum \frac{x^{3}}{3}.
\frac{x^{6}}{6}+\frac{2x^{5}}{5}-\frac{5x^{3}}{3}+С
Ef F\left(x\right) er stofnfall f\left(x\right), þá er sett allra stofnfalla f\left(x\right) gefið af F\left(x\right)+C. Þar af leiðandi bætir þú fastanum fyrir samþættingu C\in \mathrm{R} við niðurstöðuna.