Beint í aðalefni
Meta
Tick mark Image

Svipuð vandamál úr vefleit

Deila

\frac{\sqrt{2}\left(4+\sqrt{3}\right)}{\left(4-\sqrt{3}\right)\left(4+\sqrt{3}\right)}
Gerðu nefnara \frac{\sqrt{2}}{4-\sqrt{3}} að ræðri tölu með því að margfalda teljarann og nefnarann með 4+\sqrt{3}.
\frac{\sqrt{2}\left(4+\sqrt{3}\right)}{4^{2}-\left(\sqrt{3}\right)^{2}}
Íhugaðu \left(4-\sqrt{3}\right)\left(4+\sqrt{3}\right). Hægt er að breyta margföldun í mismun annarra velda með reglunni: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{2}\left(4+\sqrt{3}\right)}{16-3}
Hefðu 4 í annað veldi. Hefðu \sqrt{3} í annað veldi.
\frac{\sqrt{2}\left(4+\sqrt{3}\right)}{13}
Dragðu 3 frá 16 til að fá út 13.
\frac{4\sqrt{2}+\sqrt{2}\sqrt{3}}{13}
Notaðu dreifieiginleika til að margfalda \sqrt{2} með 4+\sqrt{3}.
\frac{4\sqrt{2}+\sqrt{6}}{13}
Til að margfalda \sqrt{2} og \sqrt{3} skaltu margfalda tölurnar undir kvaðratrótinni.