Faktor
\left(a-\left(-\sqrt{14}-4\right)\right)\left(a-\left(\sqrt{14}-4\right)\right)
Evaluasi
a^{2}+8a+2
Bagikan
Disalin ke clipboard
a^{2}+8a+2=0
Polinomial pangkat dua dapat difaktorkan menggunakan transformasi ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), dengan x_{1} dan x_{2} adalah solusi persamaan kuadrat ax^{2}+bx+c=0.
a=\frac{-8±\sqrt{8^{2}-4\times 2}}{2}
Semua persamaan dari bentuk ax^{2}+bx+c=0 dapat diselesaikan menggunakan rumus kuadrat: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Rumus kuadrat memberi dua penyelesaian, yang pertama adalah ketika ± merupakan penjumlahan dan yang kedua ketika ini merupakan pengurangan.
a=\frac{-8±\sqrt{64-4\times 2}}{2}
8 kuadrat.
a=\frac{-8±\sqrt{64-8}}{2}
Kalikan -4 kali 2.
a=\frac{-8±\sqrt{56}}{2}
Tambahkan 64 sampai -8.
a=\frac{-8±2\sqrt{14}}{2}
Ambil akar kuadrat dari 56.
a=\frac{2\sqrt{14}-8}{2}
Sekarang selesaikan persamaan a=\frac{-8±2\sqrt{14}}{2} jika ± adalah plus. Tambahkan -8 sampai 2\sqrt{14}.
a=\sqrt{14}-4
Bagi -8+2\sqrt{14} dengan 2.
a=\frac{-2\sqrt{14}-8}{2}
Sekarang selesaikan persamaan a=\frac{-8±2\sqrt{14}}{2} jika ± adalah minus. Kurangi 2\sqrt{14} dari -8.
a=-\sqrt{14}-4
Bagi -8-2\sqrt{14} dengan 2.
a^{2}+8a+2=\left(a-\left(\sqrt{14}-4\right)\right)\left(a-\left(-\sqrt{14}-4\right)\right)
Faktorkan ekspresi asli menggunakan ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Ganti -4+\sqrt{14} untuk x_{1} dan -4-\sqrt{14} untuk x_{2}.
Contoh
Persamaan kuadrat
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Persamaan linear
y = 3x + 4
Aritmetika
699 * 533
Matriks
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Persamaan simultan
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferensial
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integral
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limit
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}