Cari nilai γ
\gamma =2
\gamma =-2
Bagikan
Disalin ke clipboard
\gamma ^{2}=4
Sederhanakan \pi di kedua belah pihak.
\gamma ^{2}-4=0
Kurangi 4 dari kedua sisi.
\left(\gamma -2\right)\left(\gamma +2\right)=0
Sederhanakan \gamma ^{2}-4. Tulis ulang \gamma ^{2}-4 sebagai \gamma ^{2}-2^{2}. Selisih kuadrat dapat difaktorkan menggunakan aturan: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\gamma =2 \gamma =-2
Untuk menemukan solusi persamaan, selesaikan \gamma -2=0 dan \gamma +2=0.
\gamma ^{2}=4
Sederhanakan \pi di kedua belah pihak.
\gamma =2 \gamma =-2
Ambil akar kuadrat dari kedua sisi persamaan.
\gamma ^{2}=4
Sederhanakan \pi di kedua belah pihak.
\gamma ^{2}-4=0
Kurangi 4 dari kedua sisi.
\gamma =\frac{0±\sqrt{0^{2}-4\left(-4\right)}}{2}
Persamaan ini ada dalam bentuk standar: ax^{2}+bx+c=0. Ganti 1 dengan a, 0 dengan b, dan -4 dengan c dalam rumus kuadrat, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
\gamma =\frac{0±\sqrt{-4\left(-4\right)}}{2}
0 kuadrat.
\gamma =\frac{0±\sqrt{16}}{2}
Kalikan -4 kali -4.
\gamma =\frac{0±4}{2}
Ambil akar kuadrat dari 16.
\gamma =2
Sekarang selesaikan persamaan \gamma =\frac{0±4}{2} jika ± adalah plus. Bagi 4 dengan 2.
\gamma =-2
Sekarang selesaikan persamaan \gamma =\frac{0±4}{2} jika ± adalah minus. Bagi -4 dengan 2.
\gamma =2 \gamma =-2
Persamaan kini terselesaikan.
Contoh
Persamaan kuadrat
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Persamaan linear
y = 3x + 4
Aritmetika
699 * 533
Matriks
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Persamaan simultan
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferensial
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integral
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limit
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}