Skip դեպի հիմնական բովանդակությունը
Լուծել x-ի համար
Tick mark Image
Լուծել x-ի համար (complex solution)
Tick mark Image
Գրաֆիկ

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

6x^{4}-5xx^{2}-5x-6=0
Վերադասավորեք հավասարումը՝ բերելով այն ստանդարտ ձևի: Դասավորեք անդամները բարձրից ցածր:
±1,±2,±3,±6,±\frac{1}{2},±\frac{3}{2},±\frac{1}{3},±\frac{2}{3},±\frac{1}{6}
Ըստ Ռացիոնալ արմատի թեորեմի՝ բազմանդամի բոլոր ռացիոնալ արմատները \frac{p}{q} տեսքով են, որտեղ p բաժանում է -6 հաստատուն անդամը, իսկ q բաժանում է 6 առաջատար գործակիցը: Նշել բոլոր թեկնածուները \frac{p}{q}:
x=-\frac{2}{3}
Գտեք մեկ արմատ՝ փորձելով բոլոր ամբողջ թվով արժեքները, սկսած ամենափոքրից մինչև բացարձակ արժեք: Եթե ոչ մի ամբողջ թվով արմատ չգտնվի, փորձեք կոտորակները:
2x^{3}-3x^{2}+2x-3=0
Ըստ Բազմապատիկի թեորեմի՝ x-k-ը բազմանդամի բազմապատիկն է յուրաքանչյուր k արմատի համար: Բաժանեք -5xx^{2}-5x+6x^{4}-6 3\left(x+\frac{2}{3}\right)=3x+2-ի և ստացեք 2x^{3}-3x^{2}+2x-3: Լուծեք հավասարումը, որտեղ արդյունքը հավասարվում է 0:
±\frac{3}{2},±3,±\frac{1}{2},±1
Ըստ Ռացիոնալ արմատի թեորեմի՝ բազմանդամի բոլոր ռացիոնալ արմատները \frac{p}{q} տեսքով են, որտեղ p բաժանում է -3 հաստատուն անդամը, իսկ q բաժանում է 2 առաջատար գործակիցը: Նշել բոլոր թեկնածուները \frac{p}{q}:
x=\frac{3}{2}
Գտեք մեկ արմատ՝ փորձելով բոլոր ամբողջ թվով արժեքները, սկսած ամենափոքրից մինչև բացարձակ արժեք: Եթե ոչ մի ամբողջ թվով արմատ չգտնվի, փորձեք կոտորակները:
x^{2}+1=0
Ըստ Բազմապատիկի թեորեմի՝ x-k-ը բազմանդամի բազմապատիկն է յուրաքանչյուր k արմատի համար: Բաժանեք 2x^{3}-3x^{2}+2x-3 2\left(x-\frac{3}{2}\right)=2x-3-ի և ստացեք x^{2}+1: Լուծեք հավասարումը, որտեղ արդյունքը հավասարվում է 0:
x=\frac{0±\sqrt{0^{2}-4\times 1\times 1}}{2}
Հետևյալ ձևի բոլոր հավասարումները՝ ax^{2}+bx+c=0 կարող են լուծվել քառ. հավ. արմ. բանաձևի միջոցով՝ \frac{-b±\sqrt{b^{2}-4ac}}{2a}: Քառ. հավ. արմ. բանաձևում փոխարինեք 1-ը a-ով, 0-ը b-ով և 1-ը c-ով:
x=\frac{0±\sqrt{-4}}{2}
Կատարեք հաշվարկումներ:
x\in \emptyset
Քանի որ բացասական թվի քառակուսի արմատը նշված չէ իրական դաշտում, ուրեմն լուծումներ չկան:
x=-\frac{2}{3} x=\frac{3}{2}
Թվարկեք բոլոր գտնված լուծումները: