Լուծել x-ի համար
x=-15
x=0
Գրաֆիկ
Կիսվեք
Պատճենահանված է clipboard
x\left(5x+75\right)=0
Բաժանեք x բազմապատիկի վրա:
x=0 x=-15
Հավասարման լուծումները գտնելու համար լուծեք x=0-ն և 5x+75=0-ն։
5x^{2}+75x=0
ax^{2}+bx+c=0 ձևի բոլոր հավասարությունները կարող են լուծվել քառակուսու բանաձևի միջոցով. \frac{-b±\sqrt{b^{2}-4ac}}{2a}: Քառակուսու բանաձևը երկու լուծում ունի, մեկը երբ ±-ը գումարում է, իսկ մյուսը, երբ հանում է:
x=\frac{-75±\sqrt{75^{2}}}{2\times 5}
Այս հավասարումը ստանդարտ ձևով է՝ ax^{2}+bx+c=0: \frac{-b±\sqrt{b^{2}-4ac}}{2a} քառ. հավ. արմ. բանաձևում փոխարինեք 5-ը a-ով, 75-ը b-ով և 0-ը c-ով:
x=\frac{-75±75}{2\times 5}
Հանեք 75^{2}-ի քառակուսի արմատը:
x=\frac{-75±75}{10}
Բազմապատկեք 2 անգամ 5:
x=\frac{0}{10}
Այժմ լուծել x=\frac{-75±75}{10} հավասարումը, երբ ±-ը պլյուս է: Գումարեք -75 75-ին:
x=0
Բաժանեք 0-ը 10-ի վրա:
x=-\frac{150}{10}
Այժմ լուծել x=\frac{-75±75}{10} հավասարումը, երբ ±-ը մինուս է: Հանեք 75 -75-ից:
x=-15
Բաժանեք -150-ը 10-ի վրա:
x=0 x=-15
Հավասարումն այժմ լուծված է:
5x^{2}+75x=0
Սրա նման քառակուսի հավասարումները կարելի է լուծել՝ բարձրացնելով քառակուսի: Քառակուսի բարձրացնելու համար նախ հավասարումը պետք է լինի x^{2}+bx=c ձևով:
\frac{5x^{2}+75x}{5}=\frac{0}{5}
Բաժանեք երկու կողմերը 5-ի:
x^{2}+\frac{75}{5}x=\frac{0}{5}
Բաժանելով 5-ի՝ հետարկվում է 5-ով բազմապատկումը:
x^{2}+15x=\frac{0}{5}
Բաժանեք 75-ը 5-ի վրա:
x^{2}+15x=0
Բաժանեք 0-ը 5-ի վրա:
x^{2}+15x+\left(\frac{15}{2}\right)^{2}=\left(\frac{15}{2}\right)^{2}
Բաժանեք 15-ը՝ x անդամի գործակիցը 2-ի և ստացեք \frac{15}{2}-ը: Ապա գումարեք \frac{15}{2}-ի քառակուսին հավասարման երկու կողմերին: Այս քայլը հավասարման ձախ կողմը դարձնում է լրիվ քառակուսի:
x^{2}+15x+\frac{225}{4}=\frac{225}{4}
Բարձրացրեք քառակուսի \frac{15}{2}-ը՝ բարձրացնելով քառակուսի կոտորակի և համարիչը, և հայտարարը:
\left(x+\frac{15}{2}\right)^{2}=\frac{225}{4}
Գործոն x^{2}+15x+\frac{225}{4}: Ընդհանուր առմամբ, երբ x^{2}+bx+c մաքուր քառակուսի թիվ է, այն միշտ կարելի է համարել \left(x+\frac{b}{2}\right)^{2} ամբողջ մաս։
\sqrt{\left(x+\frac{15}{2}\right)^{2}}=\sqrt{\frac{225}{4}}
Բարձրացրեք քառակուսի արմատ հավասարման երկու կողմերը:
x+\frac{15}{2}=\frac{15}{2} x+\frac{15}{2}=-\frac{15}{2}
Պարզեցնել:
x=0 x=-15
Հանեք \frac{15}{2} հավասարման երկու կողմից:
Օրինակներ
Քառակուսային հավասարում
{ x } ^ { 2 } - 4 x - 5 = 0
Եռանկյունաչափություն
4 \sin \theta \cos \theta = 2 \sin \theta
Գծային հավասարում
y = 3x + 4
Թվաբանություն
699 * 533
Մատրիցա
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Միաժամանակյա հավասարում
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Դիֆերենցիալ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ինտեգրացիա
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Սահմանաչափեր
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}