Skip դեպի հիմնական բովանդակությունը
Լուծել x-ի համար
Tick mark Image
Գրաֆիկ

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

x^{2}+x-20=-8
Օգտագործեք բաժանիչ հատկությունը՝ x-4-ը x+5-ով բազմապատկելու և նման պայմանները համակցելու համար:
x^{2}+x-20+8=0
Հավելել 8-ը երկու կողմերում:
x^{2}+x-12=0
Գումարեք -20 և 8 և ստացեք -12:
x=\frac{-1±\sqrt{1^{2}-4\left(-12\right)}}{2}
Այս հավասարումը ստանդարտ ձևով է՝ ax^{2}+bx+c=0: \frac{-b±\sqrt{b^{2}-4ac}}{2a} քառ. հավ. արմ. բանաձևում փոխարինեք 1-ը a-ով, 1-ը b-ով և -12-ը c-ով:
x=\frac{-1±\sqrt{1-4\left(-12\right)}}{2}
1-ի քառակուսի:
x=\frac{-1±\sqrt{1+48}}{2}
Բազմապատկեք -4 անգամ -12:
x=\frac{-1±\sqrt{49}}{2}
Գումարեք 1 48-ին:
x=\frac{-1±7}{2}
Հանեք 49-ի քառակուսի արմատը:
x=\frac{6}{2}
Այժմ լուծել x=\frac{-1±7}{2} հավասարումը, երբ ±-ը պլյուս է: Գումարեք -1 7-ին:
x=3
Բաժանեք 6-ը 2-ի վրա:
x=-\frac{8}{2}
Այժմ լուծել x=\frac{-1±7}{2} հավասարումը, երբ ±-ը մինուս է: Հանեք 7 -1-ից:
x=-4
Բաժանեք -8-ը 2-ի վրա:
x=3 x=-4
Հավասարումն այժմ լուծված է:
x^{2}+x-20=-8
Օգտագործեք բաժանիչ հատկությունը՝ x-4-ը x+5-ով բազմապատկելու և նման պայմանները համակցելու համար:
x^{2}+x=-8+20
Հավելել 20-ը երկու կողմերում:
x^{2}+x=12
Գումարեք -8 և 20 և ստացեք 12:
x^{2}+x+\left(\frac{1}{2}\right)^{2}=12+\left(\frac{1}{2}\right)^{2}
Բաժանեք 1-ը՝ x անդամի գործակիցը 2-ի և ստացեք \frac{1}{2}-ը: Ապա գումարեք \frac{1}{2}-ի քառակուսին հավասարման երկու կողմերին: Այս քայլը հավասարման ձախ կողմը դարձնում է լրիվ քառակուսի:
x^{2}+x+\frac{1}{4}=12+\frac{1}{4}
Բարձրացրեք քառակուսի \frac{1}{2}-ը՝ բարձրացնելով քառակուսի կոտորակի և համարիչը, և հայտարարը:
x^{2}+x+\frac{1}{4}=\frac{49}{4}
Գումարեք 12 \frac{1}{4}-ին:
\left(x+\frac{1}{2}\right)^{2}=\frac{49}{4}
Գործոն x^{2}+x+\frac{1}{4}: Ընդհանուր առմամբ, երբ x^{2}+bx+c մաքուր քառակուսի թիվ է, այն միշտ կարելի է համարել \left(x+\frac{b}{2}\right)^{2} ամբողջ մաս։
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Բարձրացրեք քառակուսի արմատ հավասարման երկու կողմերը:
x+\frac{1}{2}=\frac{7}{2} x+\frac{1}{2}=-\frac{7}{2}
Պարզեցնել:
x=3 x=-4
Հանեք \frac{1}{2} հավասարման երկու կողմից: