Գնահատել
-\frac{4xy}{15}
Ընդարձակել
-\frac{4xy}{15}
Կիսվեք
Պատճենահանված է clipboard
x^{2}-\frac{2}{5}xy+\frac{1}{25}y^{2}-\left(\frac{8}{15}y+\frac{11}{2}x\right)^{2}+\left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Նյուտոնի երկանդամի \left(a-b\right)^{2}=a^{2}-2ab+b^{2} միջոցով ընդարձակեք \left(x-\frac{1}{5}y\right)^{2}:
x^{2}-\frac{2}{5}xy+\frac{1}{25}y^{2}-\left(\frac{64}{225}y^{2}+\frac{88}{15}yx+\frac{121}{4}x^{2}\right)+\left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Նյուտոնի երկանդամի \left(a+b\right)^{2}=a^{2}+2ab+b^{2} միջոցով ընդարձակեք \left(\frac{8}{15}y+\frac{11}{2}x\right)^{2}:
x^{2}-\frac{2}{5}xy+\frac{1}{25}y^{2}-\frac{64}{225}y^{2}-\frac{88}{15}yx-\frac{121}{4}x^{2}+\left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
\frac{64}{225}y^{2}+\frac{88}{15}yx+\frac{121}{4}x^{2}-ի հակադարձը գտնելու համար գտեք յուրաքանչյուր տերմինի հակադարձը:
x^{2}-\frac{2}{5}xy-\frac{11}{45}y^{2}-\frac{88}{15}yx-\frac{121}{4}x^{2}+\left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Համակցեք \frac{1}{25}y^{2} և -\frac{64}{225}y^{2} և ստացեք -\frac{11}{45}y^{2}:
x^{2}-\frac{94}{15}xy-\frac{11}{45}y^{2}-\frac{121}{4}x^{2}+\left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Համակցեք -\frac{2}{5}xy և -\frac{88}{15}yx և ստացեք -\frac{94}{15}xy:
-\frac{117}{4}x^{2}-\frac{94}{15}xy-\frac{11}{45}y^{2}+\left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Համակցեք x^{2} և -\frac{121}{4}x^{2} և ստացեք -\frac{117}{4}x^{2}:
-\frac{117}{4}x^{2}-\frac{94}{15}xy-\frac{11}{45}y^{2}+\frac{81}{4}x^{2}+6xy+\frac{4}{9}y^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Նյուտոնի երկանդամի \left(a+b\right)^{2}=a^{2}+2ab+b^{2} միջոցով ընդարձակեք \left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}:
-9x^{2}-\frac{94}{15}xy-\frac{11}{45}y^{2}+6xy+\frac{4}{9}y^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Համակցեք -\frac{117}{4}x^{2} և \frac{81}{4}x^{2} և ստացեք -9x^{2}:
-9x^{2}-\frac{4}{15}xy-\frac{11}{45}y^{2}+\frac{4}{9}y^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Համակցեք -\frac{94}{15}xy և 6xy և ստացեք -\frac{4}{15}xy:
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Համակցեք -\frac{11}{45}y^{2} և \frac{4}{9}y^{2} և ստացեք \frac{1}{5}y^{2}:
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\left(\frac{1}{5}y\right)^{2}-\left(3x\right)^{2}+\left(-\frac{2}{5}y\right)^{2}\right)
Դիտարկեք \left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right): Բազմապատկումը կարող է վերածվել քառակուսիների տարբերության հետևյալ կանոնի միջոցով՝ \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}:
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\left(\frac{1}{5}\right)^{2}y^{2}-\left(3x\right)^{2}+\left(-\frac{2}{5}y\right)^{2}\right)
Ընդարձակեք \left(\frac{1}{5}y\right)^{2}:
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\frac{1}{25}y^{2}-\left(3x\right)^{2}+\left(-\frac{2}{5}y\right)^{2}\right)
Հաշվեք 2-ի \frac{1}{5} աստիճանը և ստացեք \frac{1}{25}:
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\frac{1}{25}y^{2}-3^{2}x^{2}+\left(-\frac{2}{5}y\right)^{2}\right)
Ընդարձակեք \left(3x\right)^{2}:
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\frac{1}{25}y^{2}-9x^{2}+\left(-\frac{2}{5}y\right)^{2}\right)
Հաշվեք 2-ի 3 աստիճանը և ստացեք 9:
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\frac{1}{25}y^{2}-9x^{2}+\left(-\frac{2}{5}\right)^{2}y^{2}\right)
Ընդարձակեք \left(-\frac{2}{5}y\right)^{2}:
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\frac{1}{25}y^{2}-9x^{2}+\frac{4}{25}y^{2}\right)
Հաշվեք 2-ի -\frac{2}{5} աստիճանը և ստացեք \frac{4}{25}:
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\frac{1}{5}y^{2}-9x^{2}\right)
Համակցեք \frac{1}{25}y^{2} և \frac{4}{25}y^{2} և ստացեք \frac{1}{5}y^{2}:
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\frac{1}{5}y^{2}+9x^{2}
\frac{1}{5}y^{2}-9x^{2}-ի հակադարձը գտնելու համար գտեք յուրաքանչյուր տերմինի հակադարձը:
-9x^{2}-\frac{4}{15}xy+9x^{2}
Համակցեք \frac{1}{5}y^{2} և -\frac{1}{5}y^{2} և ստացեք 0:
-\frac{4}{15}xy
Համակցեք -9x^{2} և 9x^{2} և ստացեք 0:
x^{2}-\frac{2}{5}xy+\frac{1}{25}y^{2}-\left(\frac{8}{15}y+\frac{11}{2}x\right)^{2}+\left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Նյուտոնի երկանդամի \left(a-b\right)^{2}=a^{2}-2ab+b^{2} միջոցով ընդարձակեք \left(x-\frac{1}{5}y\right)^{2}:
x^{2}-\frac{2}{5}xy+\frac{1}{25}y^{2}-\left(\frac{64}{225}y^{2}+\frac{88}{15}yx+\frac{121}{4}x^{2}\right)+\left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Նյուտոնի երկանդամի \left(a+b\right)^{2}=a^{2}+2ab+b^{2} միջոցով ընդարձակեք \left(\frac{8}{15}y+\frac{11}{2}x\right)^{2}:
x^{2}-\frac{2}{5}xy+\frac{1}{25}y^{2}-\frac{64}{225}y^{2}-\frac{88}{15}yx-\frac{121}{4}x^{2}+\left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
\frac{64}{225}y^{2}+\frac{88}{15}yx+\frac{121}{4}x^{2}-ի հակադարձը գտնելու համար գտեք յուրաքանչյուր տերմինի հակադարձը:
x^{2}-\frac{2}{5}xy-\frac{11}{45}y^{2}-\frac{88}{15}yx-\frac{121}{4}x^{2}+\left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Համակցեք \frac{1}{25}y^{2} և -\frac{64}{225}y^{2} և ստացեք -\frac{11}{45}y^{2}:
x^{2}-\frac{94}{15}xy-\frac{11}{45}y^{2}-\frac{121}{4}x^{2}+\left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Համակցեք -\frac{2}{5}xy և -\frac{88}{15}yx և ստացեք -\frac{94}{15}xy:
-\frac{117}{4}x^{2}-\frac{94}{15}xy-\frac{11}{45}y^{2}+\left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Համակցեք x^{2} և -\frac{121}{4}x^{2} և ստացեք -\frac{117}{4}x^{2}:
-\frac{117}{4}x^{2}-\frac{94}{15}xy-\frac{11}{45}y^{2}+\frac{81}{4}x^{2}+6xy+\frac{4}{9}y^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Նյուտոնի երկանդամի \left(a+b\right)^{2}=a^{2}+2ab+b^{2} միջոցով ընդարձակեք \left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}:
-9x^{2}-\frac{94}{15}xy-\frac{11}{45}y^{2}+6xy+\frac{4}{9}y^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Համակցեք -\frac{117}{4}x^{2} և \frac{81}{4}x^{2} և ստացեք -9x^{2}:
-9x^{2}-\frac{4}{15}xy-\frac{11}{45}y^{2}+\frac{4}{9}y^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Համակցեք -\frac{94}{15}xy և 6xy և ստացեք -\frac{4}{15}xy:
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
Համակցեք -\frac{11}{45}y^{2} և \frac{4}{9}y^{2} և ստացեք \frac{1}{5}y^{2}:
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\left(\frac{1}{5}y\right)^{2}-\left(3x\right)^{2}+\left(-\frac{2}{5}y\right)^{2}\right)
Դիտարկեք \left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right): Բազմապատկումը կարող է վերածվել քառակուսիների տարբերության հետևյալ կանոնի միջոցով՝ \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}:
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\left(\frac{1}{5}\right)^{2}y^{2}-\left(3x\right)^{2}+\left(-\frac{2}{5}y\right)^{2}\right)
Ընդարձակեք \left(\frac{1}{5}y\right)^{2}:
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\frac{1}{25}y^{2}-\left(3x\right)^{2}+\left(-\frac{2}{5}y\right)^{2}\right)
Հաշվեք 2-ի \frac{1}{5} աստիճանը և ստացեք \frac{1}{25}:
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\frac{1}{25}y^{2}-3^{2}x^{2}+\left(-\frac{2}{5}y\right)^{2}\right)
Ընդարձակեք \left(3x\right)^{2}:
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\frac{1}{25}y^{2}-9x^{2}+\left(-\frac{2}{5}y\right)^{2}\right)
Հաշվեք 2-ի 3 աստիճանը և ստացեք 9:
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\frac{1}{25}y^{2}-9x^{2}+\left(-\frac{2}{5}\right)^{2}y^{2}\right)
Ընդարձակեք \left(-\frac{2}{5}y\right)^{2}:
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\frac{1}{25}y^{2}-9x^{2}+\frac{4}{25}y^{2}\right)
Հաշվեք 2-ի -\frac{2}{5} աստիճանը և ստացեք \frac{4}{25}:
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\frac{1}{5}y^{2}-9x^{2}\right)
Համակցեք \frac{1}{25}y^{2} և \frac{4}{25}y^{2} և ստացեք \frac{1}{5}y^{2}:
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\frac{1}{5}y^{2}+9x^{2}
\frac{1}{5}y^{2}-9x^{2}-ի հակադարձը գտնելու համար գտեք յուրաքանչյուր տերմինի հակադարձը:
-9x^{2}-\frac{4}{15}xy+9x^{2}
Համակցեք \frac{1}{5}y^{2} և -\frac{1}{5}y^{2} և ստացեք 0:
-\frac{4}{15}xy
Համակցեք -9x^{2} և 9x^{2} և ստացեք 0:
Օրինակներ
Քառակուսային հավասարում
{ x } ^ { 2 } - 4 x - 5 = 0
Եռանկյունաչափություն
4 \sin \theta \cos \theta = 2 \sin \theta
Գծային հավասարում
y = 3x + 4
Թվաբանություն
699 * 533
Մատրիցա
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Միաժամանակյա հավասարում
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Դիֆերենցիալ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ինտեգրացիա
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Սահմանաչափեր
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}