Լուծել x-ի համար
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
x = -\frac{3}{2} = -1\frac{1}{2} = -1.5
Գրաֆիկ
Կիսվեք
Պատճենահանված է clipboard
3^{2}x^{2}+6^{2}=\left(5x\right)^{2}
Ընդարձակեք \left(3x\right)^{2}:
9x^{2}+6^{2}=\left(5x\right)^{2}
Հաշվեք 2-ի 3 աստիճանը և ստացեք 9:
9x^{2}+36=\left(5x\right)^{2}
Հաշվեք 2-ի 6 աստիճանը և ստացեք 36:
9x^{2}+36=5^{2}x^{2}
Ընդարձակեք \left(5x\right)^{2}:
9x^{2}+36=25x^{2}
Հաշվեք 2-ի 5 աստիճանը և ստացեք 25:
9x^{2}+36-25x^{2}=0
Հանեք 25x^{2} երկու կողմերից:
-16x^{2}+36=0
Համակցեք 9x^{2} և -25x^{2} և ստացեք -16x^{2}:
-16x^{2}=-36
Հանեք 36 երկու կողմերից: Զրոյից հանելով ցանկացած թիվ ստացվում է նույն թվի բացասական արժեքը:
x^{2}=\frac{-36}{-16}
Բաժանեք երկու կողմերը -16-ի:
x^{2}=\frac{9}{4}
Նվազեցնել \frac{-36}{-16} կոտորակը մինչև ամենափոքր արժեքների՝ արտահանելով և չեղարկելով -4-ը:
x=\frac{3}{2} x=-\frac{3}{2}
Բարձրացրեք քառակուսի արմատ հավասարման երկու կողմերը:
3^{2}x^{2}+6^{2}=\left(5x\right)^{2}
Ընդարձակեք \left(3x\right)^{2}:
9x^{2}+6^{2}=\left(5x\right)^{2}
Հաշվեք 2-ի 3 աստիճանը և ստացեք 9:
9x^{2}+36=\left(5x\right)^{2}
Հաշվեք 2-ի 6 աստիճանը և ստացեք 36:
9x^{2}+36=5^{2}x^{2}
Ընդարձակեք \left(5x\right)^{2}:
9x^{2}+36=25x^{2}
Հաշվեք 2-ի 5 աստիճանը և ստացեք 25:
9x^{2}+36-25x^{2}=0
Հանեք 25x^{2} երկու կողմերից:
-16x^{2}+36=0
Համակցեք 9x^{2} և -25x^{2} և ստացեք -16x^{2}:
x=\frac{0±\sqrt{0^{2}-4\left(-16\right)\times 36}}{2\left(-16\right)}
Այս հավասարումը ստանդարտ ձևով է՝ ax^{2}+bx+c=0: \frac{-b±\sqrt{b^{2}-4ac}}{2a} քառ. հավ. արմ. բանաձևում փոխարինեք -16-ը a-ով, 0-ը b-ով և 36-ը c-ով:
x=\frac{0±\sqrt{-4\left(-16\right)\times 36}}{2\left(-16\right)}
0-ի քառակուսի:
x=\frac{0±\sqrt{64\times 36}}{2\left(-16\right)}
Բազմապատկեք -4 անգամ -16:
x=\frac{0±\sqrt{2304}}{2\left(-16\right)}
Բազմապատկեք 64 անգամ 36:
x=\frac{0±48}{2\left(-16\right)}
Հանեք 2304-ի քառակուսի արմատը:
x=\frac{0±48}{-32}
Բազմապատկեք 2 անգամ -16:
x=-\frac{3}{2}
Այժմ լուծել x=\frac{0±48}{-32} հավասարումը, երբ ±-ը պլյուս է: Նվազեցնել \frac{48}{-32} կոտորակը մինչև ամենափոքր արժեքների՝ արտահանելով և չեղարկելով 16-ը:
x=\frac{3}{2}
Այժմ լուծել x=\frac{0±48}{-32} հավասարումը, երբ ±-ը մինուս է: Նվազեցնել \frac{-48}{-32} կոտորակը մինչև ամենափոքր արժեքների՝ արտահանելով և չեղարկելով 16-ը:
x=-\frac{3}{2} x=\frac{3}{2}
Հավասարումն այժմ լուծված է:
Օրինակներ
Քառակուսային հավասարում
{ x } ^ { 2 } - 4 x - 5 = 0
Եռանկյունաչափություն
4 \sin \theta \cos \theta = 2 \sin \theta
Գծային հավասարում
y = 3x + 4
Թվաբանություն
699 * 533
Մատրիցա
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Միաժամանակյա հավասարում
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Դիֆերենցիալ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ինտեգրացիա
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Սահմանաչափեր
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}