Skip դեպի հիմնական բովանդակությունը
Լուծել y, x-ի համար
Tick mark Image
Գրաֆիկ

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

y-x=2
Դիտարկել առաջին հավասարումը: Հանեք x երկու կողմերից:
y-2x=1
Դիտարկել երկրորդ հավասարումը: Հանեք 2x երկու կողմերից:
y-x=2,y-2x=1
Փոխարինման միջոցով երկու հավասարում լուծելու համար նախ լուծեք հավասարումներից մեկը փոփոխականներից մեկի համար: Ապա փոխարինեք այդ փոփոխականի արդյունքը մյուս հավասարման մեջ:
y-x=2
Ընտրեք հավասարումներից մեկը և լուծեք այն y-ի համար՝ առանձնացնելով y-ը հավասարության նշանի ձախ կողմում:
y=x+2
Գումարեք x հավասարման երկու կողմին:
x+2-2x=1
Փոխարինեք x+2-ը y-ով մյուս հավասարման մեջ՝ y-2x=1:
-x+2=1
Գումարեք x -2x-ին:
-x=-1
Հանեք 2 հավասարման երկու կողմից:
x=1
Բաժանեք երկու կողմերը -1-ի:
y=1+2
Փոխարինեք 1-ը x-ով y=x+2-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես y-ի համար:
y=3
Գումարեք 2 1-ին:
y=3,x=1
Այժմ համակարգը լուծվել է:
y-x=2
Դիտարկել առաջին հավասարումը: Հանեք x երկու կողմերից:
y-2x=1
Դիտարկել երկրորդ հավասարումը: Հանեք 2x երկու կողմերից:
y-x=2,y-2x=1
Բերեք հավասարումները ստանդարտ ձևի, ապա մատրիցայի միջոցով լուծեք հավասարումների համակարգը:
\left(\begin{matrix}1&-1\\1&-2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}2\\1\end{matrix}\right)
Գրեք հավասարությունները մատրիցայի տեսքով:
inverse(\left(\begin{matrix}1&-1\\1&-2\end{matrix}\right))\left(\begin{matrix}1&-1\\1&-2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&-2\end{matrix}\right))\left(\begin{matrix}2\\1\end{matrix}\right)
Հավասարման ձախ մասը բազմապատկեք \left(\begin{matrix}1&-1\\1&-2\end{matrix}\right)-ի հակադարձ մատրիցայով:
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&-2\end{matrix}\right))\left(\begin{matrix}2\\1\end{matrix}\right)
Մատրիցայի և իր հակադարձի արտահայտումը եզակի մատրիցան է:
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&-2\end{matrix}\right))\left(\begin{matrix}2\\1\end{matrix}\right)
Հավասարության նշանի ձախ կողմում բազմապատկեք մատրիցաները:
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-\left(-1\right)}&-\frac{-1}{-2-\left(-1\right)}\\-\frac{1}{-2-\left(-1\right)}&\frac{1}{-2-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}2\\1\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) մատրիցայի համար հակադարձ մատրիցան \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) է, ուստի մատրիցայի հավասարումը կարող է վերաշարադրվել որպես մատրիցայի բազմապատկման խնդիր:
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}2&-1\\1&-1\end{matrix}\right)\left(\begin{matrix}2\\1\end{matrix}\right)
Կատարել թվաբանություն:
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}2\times 2-1\\2-1\end{matrix}\right)
Բազմապատկեք մատրիցաները:
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}3\\1\end{matrix}\right)
Կատարել թվաբանություն:
y=3,x=1
Արտահանեք մատրիցայի y և x տարրերը:
y-x=2
Դիտարկել առաջին հավասարումը: Հանեք x երկու կողմերից:
y-2x=1
Դիտարկել երկրորդ հավասարումը: Հանեք 2x երկու կողմերից:
y-x=2,y-2x=1
Մեկ անհայտով լուծելու համար փոփոխականներից մեկի գործակիցները պետք է նույնը լինեն երկու հավասարման մեջ, որպեսզի փոփոխականը չեղարկվի, երբ մեկ հավասարումը հանվի մյուսից:
y-y-x+2x=2-1
Հանեք y-2x=1 y-x=2-ից՝ հանելով նմանատիպ տերմինները հավասարման նշանի յուրաքանչյուր կողմում:
-x+2x=2-1
Գումարեք y -y-ին: y-ը և -y-ը չեղարկվում են՝ թողնելով հավասարումը ընդամենը մեկ փոփոխականով, որը կարող է լուծվել:
x=2-1
Գումարեք -x 2x-ին:
x=1
Գումարեք 2 -1-ին:
y-2=1
Փոխարինեք 1-ը x-ով y-2x=1-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես y-ի համար:
y=3
Գումարեք 2 հավասարման երկու կողմին:
y=3,x=1
Այժմ համակարգը լուծվել է: