Skip դեպի հիմնական բովանդակությունը
Լուծել x, y-ի համար
Tick mark Image
Գրաֆիկ

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

x+y=1,x-2y=14
Փոխարինման միջոցով երկու հավասարում լուծելու համար նախ լուծեք հավասարումներից մեկը փոփոխականներից մեկի համար: Ապա փոխարինեք այդ փոփոխականի արդյունքը մյուս հավասարման մեջ:
x+y=1
Ընտրեք հավասարումներից մեկը և լուծեք այն x-ի համար՝ առանձնացնելով x-ը հավասարության նշանի ձախ կողմում:
x=-y+1
Հանեք y հավասարման երկու կողմից:
-y+1-2y=14
Փոխարինեք -y+1-ը x-ով մյուս հավասարման մեջ՝ x-2y=14:
-3y+1=14
Գումարեք -y -2y-ին:
-3y=13
Հանեք 1 հավասարման երկու կողմից:
y=-\frac{13}{3}
Բաժանեք երկու կողմերը -3-ի:
x=-\left(-\frac{13}{3}\right)+1
Փոխարինեք -\frac{13}{3}-ը y-ով x=-y+1-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x=\frac{13}{3}+1
Բազմապատկեք -1 անգամ -\frac{13}{3}:
x=\frac{16}{3}
Գումարեք 1 \frac{13}{3}-ին:
x=\frac{16}{3},y=-\frac{13}{3}
Այժմ համակարգը լուծվել է:
x+y=1,x-2y=14
Բերեք հավասարումները ստանդարտ ձևի, ապա մատրիցայի միջոցով լուծեք հավասարումների համակարգը:
\left(\begin{matrix}1&1\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\14\end{matrix}\right)
Գրեք հավասարությունները մատրիցայի տեսքով:
inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}1&1\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}1\\14\end{matrix}\right)
Հավասարման ձախ մասը բազմապատկեք \left(\begin{matrix}1&1\\1&-2\end{matrix}\right)-ի հակադարձ մատրիցայով:
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}1\\14\end{matrix}\right)
Մատրիցայի և իր հակադարձի արտահայտումը եզակի մատրիցան է:
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}1\\14\end{matrix}\right)
Հավասարության նշանի ձախ կողմում բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-1}&-\frac{1}{-2-1}\\-\frac{1}{-2-1}&\frac{1}{-2-1}\end{matrix}\right)\left(\begin{matrix}1\\14\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) մատրիցայի համար հակադարձ մատրիցան \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) է, ուստի մատրիցայի հավասարումը կարող է վերաշարադրվել որպես մատրիցայի բազմապատկման խնդիր:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}&\frac{1}{3}\\\frac{1}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}1\\14\end{matrix}\right)
Կատարել թվաբանություն:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}+\frac{1}{3}\times 14\\\frac{1}{3}-\frac{1}{3}\times 14\end{matrix}\right)
Բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{16}{3}\\-\frac{13}{3}\end{matrix}\right)
Կատարել թվաբանություն:
x=\frac{16}{3},y=-\frac{13}{3}
Արտահանեք մատրիցայի x և y տարրերը:
x+y=1,x-2y=14
Մեկ անհայտով լուծելու համար փոփոխականներից մեկի գործակիցները պետք է նույնը լինեն երկու հավասարման մեջ, որպեսզի փոփոխականը չեղարկվի, երբ մեկ հավասարումը հանվի մյուսից:
x-x+y+2y=1-14
Հանեք x-2y=14 x+y=1-ից՝ հանելով նմանատիպ տերմինները հավասարման նշանի յուրաքանչյուր կողմում:
y+2y=1-14
Գումարեք x -x-ին: x-ը և -x-ը չեղարկվում են՝ թողնելով հավասարումը ընդամենը մեկ փոփոխականով, որը կարող է լուծվել:
3y=1-14
Գումարեք y 2y-ին:
3y=-13
Գումարեք 1 -14-ին:
y=-\frac{13}{3}
Բաժանեք երկու կողմերը 3-ի:
x-2\left(-\frac{13}{3}\right)=14
Փոխարինեք -\frac{13}{3}-ը y-ով x-2y=14-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x+\frac{26}{3}=14
Բազմապատկեք -2 անգամ -\frac{13}{3}:
x=\frac{16}{3}
Հանեք \frac{26}{3} հավասարման երկու կողմից:
x=\frac{16}{3},y=-\frac{13}{3}
Այժմ համակարգը լուծվել է: