Skip դեպի հիմնական բովանդակությունը
Լուծել a, b-ի համար
Tick mark Image

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

a+b=7,a-b=3
Փոխարինման միջոցով երկու հավասարում լուծելու համար նախ լուծեք հավասարումներից մեկը փոփոխականներից մեկի համար: Ապա փոխարինեք այդ փոփոխականի արդյունքը մյուս հավասարման մեջ:
a+b=7
Ընտրեք հավասարումներից մեկը և լուծեք այն a-ի համար՝ առանձնացնելով a-ը հավասարության նշանի ձախ կողմում:
a=-b+7
Հանեք b հավասարման երկու կողմից:
-b+7-b=3
Փոխարինեք -b+7-ը a-ով մյուս հավասարման մեջ՝ a-b=3:
-2b+7=3
Գումարեք -b -b-ին:
-2b=-4
Հանեք 7 հավասարման երկու կողմից:
b=2
Բաժանեք երկու կողմերը -2-ի:
a=-2+7
Փոխարինեք 2-ը b-ով a=-b+7-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես a-ի համար:
a=5
Գումարեք 7 -2-ին:
a=5,b=2
Այժմ համակարգը լուծվել է:
a+b=7,a-b=3
Բերեք հավասարումները ստանդարտ ձևի, ապա մատրիցայի միջոցով լուծեք հավասարումների համակարգը:
\left(\begin{matrix}1&1\\1&-1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}7\\3\end{matrix}\right)
Գրեք հավասարությունները մատրիցայի տեսքով:
inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}1&1\\1&-1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}7\\3\end{matrix}\right)
Հավասարման ձախ մասը բազմապատկեք \left(\begin{matrix}1&1\\1&-1\end{matrix}\right)-ի հակադարձ մատրիցայով:
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}7\\3\end{matrix}\right)
Մատրիցայի և իր հակադարձի արտահայտումը եզակի մատրիցան է:
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-1\end{matrix}\right))\left(\begin{matrix}7\\3\end{matrix}\right)
Հավասարության նշանի ձախ կողմում բազմապատկեք մատրիցաները:
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-1}&-\frac{1}{-1-1}\\-\frac{1}{-1-1}&\frac{1}{-1-1}\end{matrix}\right)\left(\begin{matrix}7\\3\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) մատրիցայի համար հակադարձ մատրիցան \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) է, ուստի մատրիցայի հավասարումը կարող է վերաշարադրվել որպես մատրիցայի բազմապատկման խնդիր:
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\\frac{1}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}7\\3\end{matrix}\right)
Կատարել թվաբանություն:
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 7+\frac{1}{2}\times 3\\\frac{1}{2}\times 7-\frac{1}{2}\times 3\end{matrix}\right)
Բազմապատկեք մատրիցաները:
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}5\\2\end{matrix}\right)
Կատարել թվաբանություն:
a=5,b=2
Արտահանեք մատրիցայի a և b տարրերը:
a+b=7,a-b=3
Մեկ անհայտով լուծելու համար փոփոխականներից մեկի գործակիցները պետք է նույնը լինեն երկու հավասարման մեջ, որպեսզի փոփոխականը չեղարկվի, երբ մեկ հավասարումը հանվի մյուսից:
a-a+b+b=7-3
Հանեք a-b=3 a+b=7-ից՝ հանելով նմանատիպ տերմինները հավասարման նշանի յուրաքանչյուր կողմում:
b+b=7-3
Գումարեք a -a-ին: a-ը և -a-ը չեղարկվում են՝ թողնելով հավասարումը ընդամենը մեկ փոփոխականով, որը կարող է լուծվել:
2b=7-3
Գումարեք b b-ին:
2b=4
Գումարեք 7 -3-ին:
b=2
Բաժանեք երկու կողմերը 2-ի:
a-2=3
Փոխարինեք 2-ը b-ով a-b=3-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես a-ի համար:
a=5
Գումարեք 2 հավասարման երկու կողմին:
a=5,b=2
Այժմ համակարգը լուծվել է: