Լուծել x, y-ի համար
x=1
y=6
Գրաֆիկ
Կիսվեք
Պատճենահանված է clipboard
-6x+2y=6,4x-4y=-20
Փոխարինման միջոցով երկու հավասարում լուծելու համար նախ լուծեք հավասարումներից մեկը փոփոխականներից մեկի համար: Ապա փոխարինեք այդ փոփոխականի արդյունքը մյուս հավասարման մեջ:
-6x+2y=6
Ընտրեք հավասարումներից մեկը և լուծեք այն x-ի համար՝ առանձնացնելով x-ը հավասարության նշանի ձախ կողմում:
-6x=-2y+6
Հանեք 2y հավասարման երկու կողմից:
x=-\frac{1}{6}\left(-2y+6\right)
Բաժանեք երկու կողմերը -6-ի:
x=\frac{1}{3}y-1
Բազմապատկեք -\frac{1}{6} անգամ -2y+6:
4\left(\frac{1}{3}y-1\right)-4y=-20
Փոխարինեք \frac{y}{3}-1-ը x-ով մյուս հավասարման մեջ՝ 4x-4y=-20:
\frac{4}{3}y-4-4y=-20
Բազմապատկեք 4 անգամ \frac{y}{3}-1:
-\frac{8}{3}y-4=-20
Գումարեք \frac{4y}{3} -4y-ին:
-\frac{8}{3}y=-16
Գումարեք 4 հավասարման երկու կողմին:
y=6
Բաժանեք հավասարման երկու կողմերը -\frac{8}{3}-ի, որը նույնն է, ինչ բազմապատկել երկու կողմերը կոտորակի հակադարձով:
x=\frac{1}{3}\times 6-1
Փոխարինեք 6-ը y-ով x=\frac{1}{3}y-1-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x=2-1
Բազմապատկեք \frac{1}{3} անգամ 6:
x=1
Գումարեք -1 2-ին:
x=1,y=6
Այժմ համակարգը լուծվել է:
-6x+2y=6,4x-4y=-20
Բերեք հավասարումները ստանդարտ ձևի, ապա մատրիցայի միջոցով լուծեք հավասարումների համակարգը:
\left(\begin{matrix}-6&2\\4&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\-20\end{matrix}\right)
Գրեք հավասարությունները մատրիցայի տեսքով:
inverse(\left(\begin{matrix}-6&2\\4&-4\end{matrix}\right))\left(\begin{matrix}-6&2\\4&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-6&2\\4&-4\end{matrix}\right))\left(\begin{matrix}6\\-20\end{matrix}\right)
Հավասարման ձախ մասը բազմապատկեք \left(\begin{matrix}-6&2\\4&-4\end{matrix}\right)-ի հակադարձ մատրիցայով:
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-6&2\\4&-4\end{matrix}\right))\left(\begin{matrix}6\\-20\end{matrix}\right)
Մատրիցայի և իր հակադարձի արտահայտումը եզակի մատրիցան է:
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-6&2\\4&-4\end{matrix}\right))\left(\begin{matrix}6\\-20\end{matrix}\right)
Հավասարության նշանի ձախ կողմում բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{-6\left(-4\right)-2\times 4}&-\frac{2}{-6\left(-4\right)-2\times 4}\\-\frac{4}{-6\left(-4\right)-2\times 4}&-\frac{6}{-6\left(-4\right)-2\times 4}\end{matrix}\right)\left(\begin{matrix}6\\-20\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) մատրիցայի համար հակադարձ մատրիցան \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) է, ուստի մատրիցայի հավասարումը կարող է վերաշարադրվել որպես մատրիցայի բազմապատկման խնդիր:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}&-\frac{1}{8}\\-\frac{1}{4}&-\frac{3}{8}\end{matrix}\right)\left(\begin{matrix}6\\-20\end{matrix}\right)
Կատարել թվաբանություն:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}\times 6-\frac{1}{8}\left(-20\right)\\-\frac{1}{4}\times 6-\frac{3}{8}\left(-20\right)\end{matrix}\right)
Բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\6\end{matrix}\right)
Կատարել թվաբանություն:
x=1,y=6
Արտահանեք մատրիցայի x և y տարրերը:
-6x+2y=6,4x-4y=-20
Մեկ անհայտով լուծելու համար փոփոխականներից մեկի գործակիցները պետք է նույնը լինեն երկու հավասարման մեջ, որպեսզի փոփոխականը չեղարկվի, երբ մեկ հավասարումը հանվի մյուսից:
4\left(-6\right)x+4\times 2y=4\times 6,-6\times 4x-6\left(-4\right)y=-6\left(-20\right)
-6x-ը և 4x-ը հավասարեցնելու համար բազմապատկեք առաջին հավասարման յուրաքանչյուր կողմի բոլոր անդամները 4-ով, իսկ երկրորդ հավասարման յուրաքանչյուր կողմի բոլոր անդամները՝ -6-ով:
-24x+8y=24,-24x+24y=120
Պարզեցնել:
-24x+24x+8y-24y=24-120
Հանեք -24x+24y=120 -24x+8y=24-ից՝ հանելով նմանատիպ տերմինները հավասարման նշանի յուրաքանչյուր կողմում:
8y-24y=24-120
Գումարեք -24x 24x-ին: -24x-ը և 24x-ը չեղարկվում են՝ թողնելով հավասարումը ընդամենը մեկ փոփոխականով, որը կարող է լուծվել:
-16y=24-120
Գումարեք 8y -24y-ին:
-16y=-96
Գումարեք 24 -120-ին:
y=6
Բաժանեք երկու կողմերը -16-ի:
4x-4\times 6=-20
Փոխարինեք 6-ը y-ով 4x-4y=-20-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
4x-24=-20
Բազմապատկեք -4 անգամ 6:
4x=4
Գումարեք 24 հավասարման երկու կողմին:
x=1
Բաժանեք երկու կողմերը 4-ի:
x=1,y=6
Այժմ համակարգը լուծվել է:
Օրինակներ
Քառակուսային հավասարում
{ x } ^ { 2 } - 4 x - 5 = 0
Եռանկյունաչափություն
4 \sin \theta \cos \theta = 2 \sin \theta
Գծային հավասարում
y = 3x + 4
Թվաբանություն
699 * 533
Մատրիցա
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Միաժամանակյա հավասարում
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Դիֆերենցիալ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ինտեգրացիա
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Սահմանաչափեր
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}