Լուծել x, y-ի համար
x=-30
y=20
Գրաֆիկ
Կիսվեք
Պատճենահանված է clipboard
x+6y=90,3x+3y=-30
Փոխարինման միջոցով երկու հավասարում լուծելու համար նախ լուծեք հավասարումներից մեկը փոփոխականներից մեկի համար: Ապա փոխարինեք այդ փոփոխականի արդյունքը մյուս հավասարման մեջ:
x+6y=90
Ընտրեք հավասարումներից մեկը և լուծեք այն x-ի համար՝ առանձնացնելով x-ը հավասարության նշանի ձախ կողմում:
x=-6y+90
Հանեք 6y հավասարման երկու կողմից:
3\left(-6y+90\right)+3y=-30
Փոխարինեք -6y+90-ը x-ով մյուս հավասարման մեջ՝ 3x+3y=-30:
-18y+270+3y=-30
Բազմապատկեք 3 անգամ -6y+90:
-15y+270=-30
Գումարեք -18y 3y-ին:
-15y=-300
Հանեք 270 հավասարման երկու կողմից:
y=20
Բաժանեք երկու կողմերը -15-ի:
x=-6\times 20+90
Փոխարինեք 20-ը y-ով x=-6y+90-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x=-120+90
Բազմապատկեք -6 անգամ 20:
x=-30
Գումարեք 90 -120-ին:
x=-30,y=20
Այժմ համակարգը լուծվել է:
x+6y=90,3x+3y=-30
Բերեք հավասարումները ստանդարտ ձևի, ապա մատրիցայի միջոցով լուծեք հավասարումների համակարգը:
\left(\begin{matrix}1&6\\3&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}90\\-30\end{matrix}\right)
Գրեք հավասարությունները մատրիցայի տեսքով:
inverse(\left(\begin{matrix}1&6\\3&3\end{matrix}\right))\left(\begin{matrix}1&6\\3&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&6\\3&3\end{matrix}\right))\left(\begin{matrix}90\\-30\end{matrix}\right)
Հավասարման ձախ մասը բազմապատկեք \left(\begin{matrix}1&6\\3&3\end{matrix}\right)-ի հակադարձ մատրիցայով:
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&6\\3&3\end{matrix}\right))\left(\begin{matrix}90\\-30\end{matrix}\right)
Մատրիցայի և իր հակադարձի արտահայտումը եզակի մատրիցան է:
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&6\\3&3\end{matrix}\right))\left(\begin{matrix}90\\-30\end{matrix}\right)
Հավասարության նշանի ձախ կողմում բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-6\times 3}&-\frac{6}{3-6\times 3}\\-\frac{3}{3-6\times 3}&\frac{1}{3-6\times 3}\end{matrix}\right)\left(\begin{matrix}90\\-30\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) մատրիցայի համար հակադարձ մատրիցան \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) է, ուստի մատրիցայի հավասարումը կարող է վերաշարադրվել որպես մատրիցայի բազմապատկման խնդիր:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}&\frac{2}{5}\\\frac{1}{5}&-\frac{1}{15}\end{matrix}\right)\left(\begin{matrix}90\\-30\end{matrix}\right)
Կատարել թվաբանություն:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}\times 90+\frac{2}{5}\left(-30\right)\\\frac{1}{5}\times 90-\frac{1}{15}\left(-30\right)\end{matrix}\right)
Բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-30\\20\end{matrix}\right)
Կատարել թվաբանություն:
x=-30,y=20
Արտահանեք մատրիցայի x և y տարրերը:
x+6y=90,3x+3y=-30
Մեկ անհայտով լուծելու համար փոփոխականներից մեկի գործակիցները պետք է նույնը լինեն երկու հավասարման մեջ, որպեսզի փոփոխականը չեղարկվի, երբ մեկ հավասարումը հանվի մյուսից:
3x+3\times 6y=3\times 90,3x+3y=-30
x-ը և 3x-ը հավասարեցնելու համար բազմապատկեք առաջին հավասարման յուրաքանչյուր կողմի բոլոր անդամները 3-ով, իսկ երկրորդ հավասարման յուրաքանչյուր կողմի բոլոր անդամները՝ 1-ով:
3x+18y=270,3x+3y=-30
Պարզեցնել:
3x-3x+18y-3y=270+30
Հանեք 3x+3y=-30 3x+18y=270-ից՝ հանելով նմանատիպ տերմինները հավասարման նշանի յուրաքանչյուր կողմում:
18y-3y=270+30
Գումարեք 3x -3x-ին: 3x-ը և -3x-ը չեղարկվում են՝ թողնելով հավասարումը ընդամենը մեկ փոփոխականով, որը կարող է լուծվել:
15y=270+30
Գումարեք 18y -3y-ին:
15y=300
Գումարեք 270 30-ին:
y=20
Բաժանեք երկու կողմերը 15-ի:
3x+3\times 20=-30
Փոխարինեք 20-ը y-ով 3x+3y=-30-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
3x+60=-30
Բազմապատկեք 3 անգամ 20:
3x=-90
Հանեք 60 հավասարման երկու կողմից:
x=-30
Բաժանեք երկու կողմերը 3-ի:
x=-30,y=20
Այժմ համակարգը լուծվել է:
Օրինակներ
Քառակուսային հավասարում
{ x } ^ { 2 } - 4 x - 5 = 0
Եռանկյունաչափություն
4 \sin \theta \cos \theta = 2 \sin \theta
Գծային հավասարում
y = 3x + 4
Թվաբանություն
699 * 533
Մատրիցա
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Միաժամանակյա հավասարում
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Դիֆերենցիալ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ինտեգրացիա
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Սահմանաչափեր
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}