Skip դեպի հիմնական բովանդակությունը
Լուծել y, x-ի համար
Tick mark Image
Գրաֆիկ

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

y-2x=1
Դիտարկել առաջին հավասարումը: Հանեք 2x երկու կողմերից:
y-2x=1,5y-7x=11
Փոխարինման միջոցով երկու հավասարում լուծելու համար նախ լուծեք հավասարումներից մեկը փոփոխականներից մեկի համար: Ապա փոխարինեք այդ փոփոխականի արդյունքը մյուս հավասարման մեջ:
y-2x=1
Ընտրեք հավասարումներից մեկը և լուծեք այն y-ի համար՝ առանձնացնելով y-ը հավասարության նշանի ձախ կողմում:
y=2x+1
Գումարեք 2x հավասարման երկու կողմին:
5\left(2x+1\right)-7x=11
Փոխարինեք 2x+1-ը y-ով մյուս հավասարման մեջ՝ 5y-7x=11:
10x+5-7x=11
Բազմապատկեք 5 անգամ 2x+1:
3x+5=11
Գումարեք 10x -7x-ին:
3x=6
Հանեք 5 հավասարման երկու կողմից:
x=2
Բաժանեք երկու կողմերը 3-ի:
y=2\times 2+1
Փոխարինեք 2-ը x-ով y=2x+1-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես y-ի համար:
y=4+1
Բազմապատկեք 2 անգամ 2:
y=5
Գումարեք 1 4-ին:
y=5,x=2
Այժմ համակարգը լուծվել է:
y-2x=1
Դիտարկել առաջին հավասարումը: Հանեք 2x երկու կողմերից:
y-2x=1,5y-7x=11
Բերեք հավասարումները ստանդարտ ձևի, ապա մատրիցայի միջոցով լուծեք հավասարումների համակարգը:
\left(\begin{matrix}1&-2\\5&-7\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}1\\11\end{matrix}\right)
Գրեք հավասարությունները մատրիցայի տեսքով:
inverse(\left(\begin{matrix}1&-2\\5&-7\end{matrix}\right))\left(\begin{matrix}1&-2\\5&-7\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\5&-7\end{matrix}\right))\left(\begin{matrix}1\\11\end{matrix}\right)
Հավասարման ձախ մասը բազմապատկեք \left(\begin{matrix}1&-2\\5&-7\end{matrix}\right)-ի հակադարձ մատրիցայով:
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\5&-7\end{matrix}\right))\left(\begin{matrix}1\\11\end{matrix}\right)
Մատրիցայի և իր հակադարձի արտահայտումը եզակի մատրիցան է:
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\5&-7\end{matrix}\right))\left(\begin{matrix}1\\11\end{matrix}\right)
Հավասարության նշանի ձախ կողմում բազմապատկեք մատրիցաները:
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{-7-\left(-2\times 5\right)}&-\frac{-2}{-7-\left(-2\times 5\right)}\\-\frac{5}{-7-\left(-2\times 5\right)}&\frac{1}{-7-\left(-2\times 5\right)}\end{matrix}\right)\left(\begin{matrix}1\\11\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) մատրիցայի համար հակադարձ մատրիցան \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) է, ուստի մատրիցայի հավասարումը կարող է վերաշարադրվել որպես մատրիցայի բազմապատկման խնդիր:
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{3}&\frac{2}{3}\\-\frac{5}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}1\\11\end{matrix}\right)
Կատարել թվաբանություն:
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{3}+\frac{2}{3}\times 11\\-\frac{5}{3}+\frac{1}{3}\times 11\end{matrix}\right)
Բազմապատկեք մատրիցաները:
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}5\\2\end{matrix}\right)
Կատարել թվաբանություն:
y=5,x=2
Արտահանեք մատրիցայի y և x տարրերը:
y-2x=1
Դիտարկել առաջին հավասարումը: Հանեք 2x երկու կողմերից:
y-2x=1,5y-7x=11
Մեկ անհայտով լուծելու համար փոփոխականներից մեկի գործակիցները պետք է նույնը լինեն երկու հավասարման մեջ, որպեսզի փոփոխականը չեղարկվի, երբ մեկ հավասարումը հանվի մյուսից:
5y+5\left(-2\right)x=5,5y-7x=11
y-ը և 5y-ը հավասարեցնելու համար բազմապատկեք առաջին հավասարման յուրաքանչյուր կողմի բոլոր անդամները 5-ով, իսկ երկրորդ հավասարման յուրաքանչյուր կողմի բոլոր անդամները՝ 1-ով:
5y-10x=5,5y-7x=11
Պարզեցնել:
5y-5y-10x+7x=5-11
Հանեք 5y-7x=11 5y-10x=5-ից՝ հանելով նմանատիպ տերմինները հավասարման նշանի յուրաքանչյուր կողմում:
-10x+7x=5-11
Գումարեք 5y -5y-ին: 5y-ը և -5y-ը չեղարկվում են՝ թողնելով հավասարումը ընդամենը մեկ փոփոխականով, որը կարող է լուծվել:
-3x=5-11
Գումարեք -10x 7x-ին:
-3x=-6
Գումարեք 5 -11-ին:
x=2
Բաժանեք երկու կողմերը -3-ի:
5y-7\times 2=11
Փոխարինեք 2-ը x-ով 5y-7x=11-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես y-ի համար:
5y-14=11
Բազմապատկեք -7 անգամ 2:
5y=25
Գումարեք 14 հավասարման երկու կողմին:
y=5
Բաժանեք երկու կողմերը 5-ի:
y=5,x=2
Այժմ համակարգը լուծվել է: