Skip դեպի հիմնական բովանդակությունը
Լուծել x, y-ի համար
Tick mark Image
Գրաֆիկ

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

y-x=-9
Դիտարկել երկրորդ հավասարումը: Հանեք x երկու կողմերից:
x+y=27,-x+y=-9
Փոխարինման միջոցով երկու հավասարում լուծելու համար նախ լուծեք հավասարումներից մեկը փոփոխականներից մեկի համար: Ապա փոխարինեք այդ փոփոխականի արդյունքը մյուս հավասարման մեջ:
x+y=27
Ընտրեք հավասարումներից մեկը և լուծեք այն x-ի համար՝ առանձնացնելով x-ը հավասարության նշանի ձախ կողմում:
x=-y+27
Հանեք y հավասարման երկու կողմից:
-\left(-y+27\right)+y=-9
Փոխարինեք -y+27-ը x-ով մյուս հավասարման մեջ՝ -x+y=-9:
y-27+y=-9
Բազմապատկեք -1 անգամ -y+27:
2y-27=-9
Գումարեք y y-ին:
2y=18
Գումարեք 27 հավասարման երկու կողմին:
y=9
Բաժանեք երկու կողմերը 2-ի:
x=-9+27
Փոխարինեք 9-ը y-ով x=-y+27-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x=18
Գումարեք 27 -9-ին:
x=18,y=9
Այժմ համակարգը լուծվել է:
y-x=-9
Դիտարկել երկրորդ հավասարումը: Հանեք x երկու կողմերից:
x+y=27,-x+y=-9
Բերեք հավասարումները ստանդարտ ձևի, ապա մատրիցայի միջոցով լուծեք հավասարումների համակարգը:
\left(\begin{matrix}1&1\\-1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}27\\-9\end{matrix}\right)
Գրեք հավասարությունները մատրիցայի տեսքով:
inverse(\left(\begin{matrix}1&1\\-1&1\end{matrix}\right))\left(\begin{matrix}1&1\\-1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-1&1\end{matrix}\right))\left(\begin{matrix}27\\-9\end{matrix}\right)
Հավասարման ձախ մասը բազմապատկեք \left(\begin{matrix}1&1\\-1&1\end{matrix}\right)-ի հակադարձ մատրիցայով:
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-1&1\end{matrix}\right))\left(\begin{matrix}27\\-9\end{matrix}\right)
Մատրիցայի և իր հակադարձի արտահայտումը եզակի մատրիցան է:
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-1&1\end{matrix}\right))\left(\begin{matrix}27\\-9\end{matrix}\right)
Հավասարության նշանի ձախ կողմում բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-1\right)}&-\frac{1}{1-\left(-1\right)}\\-\frac{-1}{1-\left(-1\right)}&\frac{1}{1-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}27\\-9\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) մատրիցայի համար հակադարձ մատրիցան \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) է, ուստի մատրիցայի հավասարումը կարող է վերաշարադրվել որպես մատրիցայի բազմապատկման խնդիր:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&-\frac{1}{2}\\\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}27\\-9\end{matrix}\right)
Կատարել թվաբանություն:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 27-\frac{1}{2}\left(-9\right)\\\frac{1}{2}\times 27+\frac{1}{2}\left(-9\right)\end{matrix}\right)
Բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}18\\9\end{matrix}\right)
Կատարել թվաբանություն:
x=18,y=9
Արտահանեք մատրիցայի x և y տարրերը:
y-x=-9
Դիտարկել երկրորդ հավասարումը: Հանեք x երկու կողմերից:
x+y=27,-x+y=-9
Մեկ անհայտով լուծելու համար փոփոխականներից մեկի գործակիցները պետք է նույնը լինեն երկու հավասարման մեջ, որպեսզի փոփոխականը չեղարկվի, երբ մեկ հավասարումը հանվի մյուսից:
x+x+y-y=27+9
Հանեք -x+y=-9 x+y=27-ից՝ հանելով նմանատիպ տերմինները հավասարման նշանի յուրաքանչյուր կողմում:
x+x=27+9
Գումարեք y -y-ին: y-ը և -y-ը չեղարկվում են՝ թողնելով հավասարումը ընդամենը մեկ փոփոխականով, որը կարող է լուծվել:
2x=27+9
Գումարեք x x-ին:
2x=36
Գումարեք 27 9-ին:
x=18
Բաժանեք երկու կողմերը 2-ի:
-18+y=-9
Փոխարինեք 18-ը x-ով -x+y=-9-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես y-ի համար:
y=9
Գումարեք 18 հավասարման երկու կողմին:
x=18,y=9
Այժմ համակարգը լուծվել է: