\left\{ \begin{array} { l } { 3 x - 2 y = 5 } \\ { 2 x + y = 8 } \end{array} \right.
Լուծել x, y-ի համար
x=3
y=2
Գրաֆիկ
Կիսվեք
Պատճենահանված է clipboard
3x-2y=5,2x+y=8
Փոխարինման միջոցով երկու հավասարում լուծելու համար նախ լուծեք հավասարումներից մեկը փոփոխականներից մեկի համար: Ապա փոխարինեք այդ փոփոխականի արդյունքը մյուս հավասարման մեջ:
3x-2y=5
Ընտրեք հավասարումներից մեկը և լուծեք այն x-ի համար՝ առանձնացնելով x-ը հավասարության նշանի ձախ կողմում:
3x=2y+5
Գումարեք 2y հավասարման երկու կողմին:
x=\frac{1}{3}\left(2y+5\right)
Բաժանեք երկու կողմերը 3-ի:
x=\frac{2}{3}y+\frac{5}{3}
Բազմապատկեք \frac{1}{3} անգամ 2y+5:
2\left(\frac{2}{3}y+\frac{5}{3}\right)+y=8
Փոխարինեք \frac{2y+5}{3}-ը x-ով մյուս հավասարման մեջ՝ 2x+y=8:
\frac{4}{3}y+\frac{10}{3}+y=8
Բազմապատկեք 2 անգամ \frac{2y+5}{3}:
\frac{7}{3}y+\frac{10}{3}=8
Գումարեք \frac{4y}{3} y-ին:
\frac{7}{3}y=\frac{14}{3}
Հանեք \frac{10}{3} հավասարման երկու կողմից:
y=2
Բաժանեք հավասարման երկու կողմերը \frac{7}{3}-ի, որը նույնն է, ինչ բազմապատկել երկու կողմերը կոտորակի հակադարձով:
x=\frac{2}{3}\times 2+\frac{5}{3}
Փոխարինեք 2-ը y-ով x=\frac{2}{3}y+\frac{5}{3}-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x=\frac{4+5}{3}
Բազմապատկեք \frac{2}{3} անգամ 2:
x=3
Գումարեք \frac{5}{3} \frac{4}{3}-ին՝ գտնելով ընդհանուր հայտարարը և գումարելով համարիչները: Ապա, հնարավորության դեպքում, նվազեցրեք կոտորակը մինչև ամենացածր անդամը:
x=3,y=2
Այժմ համակարգը լուծվել է:
3x-2y=5,2x+y=8
Բերեք հավասարումները ստանդարտ ձևի, ապա մատրիցայի միջոցով լուծեք հավասարումների համակարգը:
\left(\begin{matrix}3&-2\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\8\end{matrix}\right)
Գրեք հավասարությունները մատրիցայի տեսքով:
inverse(\left(\begin{matrix}3&-2\\2&1\end{matrix}\right))\left(\begin{matrix}3&-2\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\2&1\end{matrix}\right))\left(\begin{matrix}5\\8\end{matrix}\right)
Հավասարման ձախ մասը բազմապատկեք \left(\begin{matrix}3&-2\\2&1\end{matrix}\right)-ի հակադարձ մատրիցայով:
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\2&1\end{matrix}\right))\left(\begin{matrix}5\\8\end{matrix}\right)
Մատրիցայի և իր հակադարձի արտահայտումը եզակի մատրիցան է:
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\2&1\end{matrix}\right))\left(\begin{matrix}5\\8\end{matrix}\right)
Հավասարության նշանի ձախ կողմում բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-\left(-2\times 2\right)}&-\frac{-2}{3-\left(-2\times 2\right)}\\-\frac{2}{3-\left(-2\times 2\right)}&\frac{3}{3-\left(-2\times 2\right)}\end{matrix}\right)\left(\begin{matrix}5\\8\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) մատրիցայի համար հակադարձ մատրիցան \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) է, ուստի մատրիցայի հավասարումը կարող է վերաշարադրվել որպես մատրիցայի բազմապատկման խնդիր:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&\frac{2}{7}\\-\frac{2}{7}&\frac{3}{7}\end{matrix}\right)\left(\begin{matrix}5\\8\end{matrix}\right)
Կատարել թվաբանություն:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}\times 5+\frac{2}{7}\times 8\\-\frac{2}{7}\times 5+\frac{3}{7}\times 8\end{matrix}\right)
Բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\2\end{matrix}\right)
Կատարել թվաբանություն:
x=3,y=2
Արտահանեք մատրիցայի x և y տարրերը:
3x-2y=5,2x+y=8
Մեկ անհայտով լուծելու համար փոփոխականներից մեկի գործակիցները պետք է նույնը լինեն երկու հավասարման մեջ, որպեսզի փոփոխականը չեղարկվի, երբ մեկ հավասարումը հանվի մյուսից:
2\times 3x+2\left(-2\right)y=2\times 5,3\times 2x+3y=3\times 8
3x-ը և 2x-ը հավասարեցնելու համար բազմապատկեք առաջին հավասարման յուրաքանչյուր կողմի բոլոր անդամները 2-ով, իսկ երկրորդ հավասարման յուրաքանչյուր կողմի բոլոր անդամները՝ 3-ով:
6x-4y=10,6x+3y=24
Պարզեցնել:
6x-6x-4y-3y=10-24
Հանեք 6x+3y=24 6x-4y=10-ից՝ հանելով նմանատիպ տերմինները հավասարման նշանի յուրաքանչյուր կողմում:
-4y-3y=10-24
Գումարեք 6x -6x-ին: 6x-ը և -6x-ը չեղարկվում են՝ թողնելով հավասարումը ընդամենը մեկ փոփոխականով, որը կարող է լուծվել:
-7y=10-24
Գումարեք -4y -3y-ին:
-7y=-14
Գումարեք 10 -24-ին:
y=2
Բաժանեք երկու կողմերը -7-ի:
2x+2=8
Փոխարինեք 2-ը y-ով 2x+y=8-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
2x=6
Հանեք 2 հավասարման երկու կողմից:
x=3
Բաժանեք երկու կողմերը 2-ի:
x=3,y=2
Այժմ համակարգը լուծվել է:
Օրինակներ
Քառակուսային հավասարում
{ x } ^ { 2 } - 4 x - 5 = 0
Եռանկյունաչափություն
4 \sin \theta \cos \theta = 2 \sin \theta
Գծային հավասարում
y = 3x + 4
Թվաբանություն
699 * 533
Մատրիցա
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Միաժամանակյա հավասարում
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Դիֆերենցիալ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ինտեգրացիա
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Սահմանաչափեր
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}