Skip դեպի հիմնական բովանդակությունը
Լուծել x, y-ի համար
Tick mark Image
Գրաֆիկ

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

3x+y=-1,x+5y=9
Փոխարինման միջոցով երկու հավասարում լուծելու համար նախ լուծեք հավասարումներից մեկը փոփոխականներից մեկի համար: Ապա փոխարինեք այդ փոփոխականի արդյունքը մյուս հավասարման մեջ:
3x+y=-1
Ընտրեք հավասարումներից մեկը և լուծեք այն x-ի համար՝ առանձնացնելով x-ը հավասարության նշանի ձախ կողմում:
3x=-y-1
Հանեք y հավասարման երկու կողմից:
x=\frac{1}{3}\left(-y-1\right)
Բաժանեք երկու կողմերը 3-ի:
x=-\frac{1}{3}y-\frac{1}{3}
Բազմապատկեք \frac{1}{3} անգամ -y-1:
-\frac{1}{3}y-\frac{1}{3}+5y=9
Փոխարինեք \frac{-y-1}{3}-ը x-ով մյուս հավասարման մեջ՝ x+5y=9:
\frac{14}{3}y-\frac{1}{3}=9
Գումարեք -\frac{y}{3} 5y-ին:
\frac{14}{3}y=\frac{28}{3}
Գումարեք \frac{1}{3} հավասարման երկու կողմին:
y=2
Բաժանեք հավասարման երկու կողմերը \frac{14}{3}-ի, որը նույնն է, ինչ բազմապատկել երկու կողմերը կոտորակի հակադարձով:
x=-\frac{1}{3}\times 2-\frac{1}{3}
Փոխարինեք 2-ը y-ով x=-\frac{1}{3}y-\frac{1}{3}-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x=\frac{-2-1}{3}
Բազմապատկեք -\frac{1}{3} անգամ 2:
x=-1
Գումարեք -\frac{1}{3} -\frac{2}{3}-ին՝ գտնելով ընդհանուր հայտարարը և գումարելով համարիչները: Ապա, հնարավորության դեպքում, նվազեցրեք կոտորակը մինչև ամենացածր անդամը:
x=-1,y=2
Այժմ համակարգը լուծվել է:
3x+y=-1,x+5y=9
Բերեք հավասարումները ստանդարտ ձևի, ապա մատրիցայի միջոցով լուծեք հավասարումների համակարգը:
\left(\begin{matrix}3&1\\1&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\9\end{matrix}\right)
Գրեք հավասարությունները մատրիցայի տեսքով:
inverse(\left(\begin{matrix}3&1\\1&5\end{matrix}\right))\left(\begin{matrix}3&1\\1&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\1&5\end{matrix}\right))\left(\begin{matrix}-1\\9\end{matrix}\right)
Հավասարման ձախ մասը բազմապատկեք \left(\begin{matrix}3&1\\1&5\end{matrix}\right)-ի հակադարձ մատրիցայով:
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\1&5\end{matrix}\right))\left(\begin{matrix}-1\\9\end{matrix}\right)
Մատրիցայի և իր հակադարձի արտահայտումը եզակի մատրիցան է:
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\1&5\end{matrix}\right))\left(\begin{matrix}-1\\9\end{matrix}\right)
Հավասարության նշանի ձախ կողմում բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{3\times 5-1}&-\frac{1}{3\times 5-1}\\-\frac{1}{3\times 5-1}&\frac{3}{3\times 5-1}\end{matrix}\right)\left(\begin{matrix}-1\\9\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) մատրիցայի համար հակադարձ մատրիցան \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) է, ուստի մատրիցայի հավասարումը կարող է վերաշարադրվել որպես մատրիցայի բազմապատկման խնդիր:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{14}&-\frac{1}{14}\\-\frac{1}{14}&\frac{3}{14}\end{matrix}\right)\left(\begin{matrix}-1\\9\end{matrix}\right)
Կատարել թվաբանություն:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{14}\left(-1\right)-\frac{1}{14}\times 9\\-\frac{1}{14}\left(-1\right)+\frac{3}{14}\times 9\end{matrix}\right)
Բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\2\end{matrix}\right)
Կատարել թվաբանություն:
x=-1,y=2
Արտահանեք մատրիցայի x և y տարրերը:
3x+y=-1,x+5y=9
Մեկ անհայտով լուծելու համար փոփոխականներից մեկի գործակիցները պետք է նույնը լինեն երկու հավասարման մեջ, որպեսզի փոփոխականը չեղարկվի, երբ մեկ հավասարումը հանվի մյուսից:
3x+y=-1,3x+3\times 5y=3\times 9
3x-ը և x-ը հավասարեցնելու համար բազմապատկեք առաջին հավասարման յուրաքանչյուր կողմի բոլոր անդամները 1-ով, իսկ երկրորդ հավասարման յուրաքանչյուր կողմի բոլոր անդամները՝ 3-ով:
3x+y=-1,3x+15y=27
Պարզեցնել:
3x-3x+y-15y=-1-27
Հանեք 3x+15y=27 3x+y=-1-ից՝ հանելով նմանատիպ տերմինները հավասարման նշանի յուրաքանչյուր կողմում:
y-15y=-1-27
Գումարեք 3x -3x-ին: 3x-ը և -3x-ը չեղարկվում են՝ թողնելով հավասարումը ընդամենը մեկ փոփոխականով, որը կարող է լուծվել:
-14y=-1-27
Գումարեք y -15y-ին:
-14y=-28
Գումարեք -1 -27-ին:
y=2
Բաժանեք երկու կողմերը -14-ի:
x+5\times 2=9
Փոխարինեք 2-ը y-ով x+5y=9-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x+10=9
Բազմապատկեք 5 անգամ 2:
x=-1
Հանեք 10 հավասարման երկու կողմից:
x=-1,y=2
Այժմ համակարգը լուծվել է: