Skip դեպի հիմնական բովանդակությունը
Լուծել x, y-ի համար
Tick mark Image
Գրաֆիկ

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

2x-y=5,4x+6y=24
Փոխարինման միջոցով երկու հավասարում լուծելու համար նախ լուծեք հավասարումներից մեկը փոփոխականներից մեկի համար: Ապա փոխարինեք այդ փոփոխականի արդյունքը մյուս հավասարման մեջ:
2x-y=5
Ընտրեք հավասարումներից մեկը և լուծեք այն x-ի համար՝ առանձնացնելով x-ը հավասարության նշանի ձախ կողմում:
2x=y+5
Գումարեք y հավասարման երկու կողմին:
x=\frac{1}{2}\left(y+5\right)
Բաժանեք երկու կողմերը 2-ի:
x=\frac{1}{2}y+\frac{5}{2}
Բազմապատկեք \frac{1}{2} անգամ y+5:
4\left(\frac{1}{2}y+\frac{5}{2}\right)+6y=24
Փոխարինեք \frac{5+y}{2}-ը x-ով մյուս հավասարման մեջ՝ 4x+6y=24:
2y+10+6y=24
Բազմապատկեք 4 անգամ \frac{5+y}{2}:
8y+10=24
Գումարեք 2y 6y-ին:
8y=14
Հանեք 10 հավասարման երկու կողմից:
y=\frac{7}{4}
Բաժանեք երկու կողմերը 8-ի:
x=\frac{1}{2}\times \frac{7}{4}+\frac{5}{2}
Փոխարինեք \frac{7}{4}-ը y-ով x=\frac{1}{2}y+\frac{5}{2}-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
x=\frac{7}{8}+\frac{5}{2}
Բազմապատկեք \frac{1}{2} անգամ \frac{7}{4}-ը՝ բազմապատկելով համարիչ անգամ համարիչ և հայտարար անգամ հայտարար: Ապա, հնարավորության դեպքում, նվազեցրեք կոտորակը ամենացածր անդամների:
x=\frac{27}{8}
Գումարեք \frac{5}{2} \frac{7}{8}-ին՝ գտնելով ընդհանուր հայտարարը և գումարելով համարիչները: Ապա, հնարավորության դեպքում, նվազեցրեք կոտորակը մինչև ամենացածր անդամը:
x=\frac{27}{8},y=\frac{7}{4}
Այժմ համակարգը լուծվել է:
2x-y=5,4x+6y=24
Բերեք հավասարումները ստանդարտ ձևի, ապա մատրիցայի միջոցով լուծեք հավասարումների համակարգը:
\left(\begin{matrix}2&-1\\4&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\24\end{matrix}\right)
Գրեք հավասարությունները մատրիցայի տեսքով:
inverse(\left(\begin{matrix}2&-1\\4&6\end{matrix}\right))\left(\begin{matrix}2&-1\\4&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\4&6\end{matrix}\right))\left(\begin{matrix}5\\24\end{matrix}\right)
Հավասարման ձախ մասը բազմապատկեք \left(\begin{matrix}2&-1\\4&6\end{matrix}\right)-ի հակադարձ մատրիցայով:
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\4&6\end{matrix}\right))\left(\begin{matrix}5\\24\end{matrix}\right)
Մատրիցայի և իր հակադարձի արտահայտումը եզակի մատրիցան է:
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\4&6\end{matrix}\right))\left(\begin{matrix}5\\24\end{matrix}\right)
Հավասարության նշանի ձախ կողմում բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{2\times 6-\left(-4\right)}&-\frac{-1}{2\times 6-\left(-4\right)}\\-\frac{4}{2\times 6-\left(-4\right)}&\frac{2}{2\times 6-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}5\\24\end{matrix}\right)
2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) մատրիցայի համար հակադարձ մատրիցան \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) է, ուստի մատրիցայի հավասարումը կարող է վերաշարադրվել որպես մատրիցայի բազմապատկման խնդիր:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8}&\frac{1}{16}\\-\frac{1}{4}&\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}5\\24\end{matrix}\right)
Կատարել թվաբանություն:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8}\times 5+\frac{1}{16}\times 24\\-\frac{1}{4}\times 5+\frac{1}{8}\times 24\end{matrix}\right)
Բազմապատկեք մատրիցաները:
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{27}{8}\\\frac{7}{4}\end{matrix}\right)
Կատարել թվաբանություն:
x=\frac{27}{8},y=\frac{7}{4}
Արտահանեք մատրիցայի x և y տարրերը:
2x-y=5,4x+6y=24
Մեկ անհայտով լուծելու համար փոփոխականներից մեկի գործակիցները պետք է նույնը լինեն երկու հավասարման մեջ, որպեսզի փոփոխականը չեղարկվի, երբ մեկ հավասարումը հանվի մյուսից:
4\times 2x+4\left(-1\right)y=4\times 5,2\times 4x+2\times 6y=2\times 24
2x-ը և 4x-ը հավասարեցնելու համար բազմապատկեք առաջին հավասարման յուրաքանչյուր կողմի բոլոր անդամները 4-ով, իսկ երկրորդ հավասարման յուրաքանչյուր կողմի բոլոր անդամները՝ 2-ով:
8x-4y=20,8x+12y=48
Պարզեցնել:
8x-8x-4y-12y=20-48
Հանեք 8x+12y=48 8x-4y=20-ից՝ հանելով նմանատիպ տերմինները հավասարման նշանի յուրաքանչյուր կողմում:
-4y-12y=20-48
Գումարեք 8x -8x-ին: 8x-ը և -8x-ը չեղարկվում են՝ թողնելով հավասարումը ընդամենը մեկ փոփոխականով, որը կարող է լուծվել:
-16y=20-48
Գումարեք -4y -12y-ին:
-16y=-28
Գումարեք 20 -48-ին:
y=\frac{7}{4}
Բաժանեք երկու կողմերը -16-ի:
4x+6\times \frac{7}{4}=24
Փոխարինեք \frac{7}{4}-ը y-ով 4x+6y=24-ում: Քանի որ վերջնական հավասարումը պարունակում է միայն մեկ փոփոխական, կարող եք լուծել անմիջապես x-ի համար:
4x+\frac{21}{2}=24
Բազմապատկեք 6 անգամ \frac{7}{4}:
4x=\frac{27}{2}
Հանեք \frac{21}{2} հավասարման երկու կողմից:
x=\frac{27}{8}
Բաժանեք երկու կողմերը 4-ի:
x=\frac{27}{8},y=\frac{7}{4}
Այժմ համակարգը լուծվել է: