Skip դեպի հիմնական բովանդակությունը
Գնահատել
Tick mark Image

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

\int x^{2}-7x+9\mathrm{d}x
Նախ գնահատեք անորոշ ինտեգրալը։
\int x^{2}\mathrm{d}x+\int -7x\mathrm{d}x+\int 9\mathrm{d}x
Ամբողջացրեք ընդհանուր անդամը անդամով։
\int x^{2}\mathrm{d}x-7\int x\mathrm{d}x+\int 9\mathrm{d}x
Դուրս բերեք յուրաքանչյուր անդամի հաստատունը։
\frac{x^{3}}{3}-7\int x\mathrm{d}x+\int 9\mathrm{d}x
Քանի որ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 համար, փոխարինեք \int x^{2}\mathrm{d}x-ը \frac{x^{3}}{3}-ով:
\frac{x^{3}}{3}-\frac{7x^{2}}{2}+\int 9\mathrm{d}x
Քանի որ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 համար, փոխարինեք \int x\mathrm{d}x-ը \frac{x^{2}}{2}-ով: Բազմապատկեք -7 անգամ \frac{x^{2}}{2}:
\frac{x^{3}}{3}-\frac{7x^{2}}{2}+9x
Գտեք 9-ի ինտեգրալը՝ օգտագործելով ընդհանուր ինտեգրալների \int a\mathrm{d}x=ax կանոնի աղյուսակը։
\frac{100^{3}}{3}-\frac{7}{2}\times 100^{2}+9\times 100-\left(\frac{0^{3}}{3}-\frac{7}{2}\times 0^{2}+9\times 0\right)
Որոշյալ ինտեգրալը արտահայտության պարզ ֆունկցիան է՝ հաշվարկված ինտեգրացիայի վերին սահմանաչափով, հանած պարզ ֆունկցիան՝ հաշվարկված ինտեգրացիայի ստորին սահմանաչափում:
\frac{897700}{3}
Պարզեցնել: