Skip դեպի հիմնական բովանդակությունը
Գնահատել
Tick mark Image
Տարբերակել վերագրած x-ը
Tick mark Image

Նմանատիպ խնդիրներ վեբ-որոնումից

Կիսվեք

\int x^{2}-4x+3x-12\mathrm{d}x
Գործադրեք բաժանիչ հատկությունը՝ բազմապատկելով x+3-ի յուրաքանչյուր արտահայտությունը x-4-ի յուրաքանչյուր արտահայտությամբ:
\int x^{2}-x-12\mathrm{d}x
Համակցեք -4x և 3x և ստացեք -x:
\int x^{2}\mathrm{d}x+\int -x\mathrm{d}x+\int -12\mathrm{d}x
Ամբողջացրեք ընդհանուր անդամը անդամով։
\int x^{2}\mathrm{d}x-\int x\mathrm{d}x+\int -12\mathrm{d}x
Դուրս բերեք յուրաքանչյուր անդամի հաստատունը։
\frac{x^{3}}{3}-\int x\mathrm{d}x+\int -12\mathrm{d}x
Քանի որ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 համար, փոխարինեք \int x^{2}\mathrm{d}x-ը \frac{x^{3}}{3}-ով:
\frac{x^{3}}{3}-\frac{x^{2}}{2}+\int -12\mathrm{d}x
Քանի որ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1 համար, փոխարինեք \int x\mathrm{d}x-ը \frac{x^{2}}{2}-ով: Բազմապատկեք -1 անգամ \frac{x^{2}}{2}:
\frac{x^{3}}{3}-\frac{x^{2}}{2}-12x
Գտեք -12-ի ինտեգրալը՝ օգտագործելով ընդհանուր ինտեգրալների \int a\mathrm{d}x=ax կանոնի աղյուսակը։
\frac{x^{3}}{3}-\frac{x^{2}}{2}-12x+С
Եթե F\left(x\right)-ը f\left(x\right)-ի հակաածանցյալն է, ապաf\left(x\right)-ի բոլոր հակաածանցյալների հավաքածուն տրված է F\left(x\right)+C-ի կողմից։ Հետևաբար, ավելացրեք C\in \mathrm{R} ինտեգրացիայի հաստատունն արդյունքին։