Megoldás a(z) x változóra
\left\{\begin{matrix}x=\frac{2\left(3z+37\right)}{y-5z-52}\text{, }&y\neq 5z+52\\x\in \mathrm{R}\text{, }&z=-\frac{37}{3}\text{ and }y=-\frac{29}{3}\end{matrix}\right,
Megoldás a(z) y változóra
\left\{\begin{matrix}y=\frac{5xz+52x+6z+74}{x}\text{, }&x\neq 0\\y\in \mathrm{R}\text{, }&z=-\frac{37}{3}\text{ and }x=0\end{matrix}\right,
Megosztás
Átmásolva a vágólapra
yx-5zx-52x-74=6z
Bővítsük az egyenlet mindkét oldalát ezzel: 6z. Egy adott számhoz nullát adva ugyanazt a számot kapjuk.
yx-5zx-52x=6z+74
Bővítsük az egyenlet mindkét oldalát ezzel: 74.
\left(y-5z-52\right)x=6z+74
Összevonunk minden tagot, amelyben szerepel x.
\frac{\left(y-5z-52\right)x}{y-5z-52}=\frac{6z+74}{y-5z-52}
Mindkét oldalt elosztjuk ennyivel: y-5z-52.
x=\frac{6z+74}{y-5z-52}
A(z) y-5z-52 értékkel való osztás eltünteti a(z) y-5z-52 értékkel való szorzást.
x=\frac{2\left(3z+37\right)}{y-5z-52}
6z+74 elosztása a következővel: y-5z-52.
yx-52x-6z-74=5zx
Bővítsük az egyenlet mindkét oldalát ezzel: 5zx. Egy adott számhoz nullát adva ugyanazt a számot kapjuk.
yx-6z-74=5zx+52x
Bővítsük az egyenlet mindkét oldalát ezzel: 52x.
yx-74=5zx+52x+6z
Bővítsük az egyenlet mindkét oldalát ezzel: 6z.
yx=5zx+52x+6z+74
Bővítsük az egyenlet mindkét oldalát ezzel: 74.
xy=5xz+52x+6z+74
Az egyenlet kanonikus alakban van.
\frac{xy}{x}=\frac{5xz+52x+6z+74}{x}
Mindkét oldalt elosztjuk ennyivel: x.
y=\frac{5xz+52x+6z+74}{x}
A(z) x értékkel való osztás eltünteti a(z) x értékkel való szorzást.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}