Megoldás a(z) y változóra (complex solution)
\left\{\begin{matrix}y=-\frac{x}{1-\lambda }\text{, }&\lambda \neq 1\\y\in \mathrm{C}\text{, }&x=0\text{ and }\lambda =1\end{matrix}\right,
Megoldás a(z) y változóra
\left\{\begin{matrix}y=-\frac{x}{1-\lambda }\text{, }&\lambda \neq 1\\y\in \mathrm{R}\text{, }&x=0\text{ and }\lambda =1\end{matrix}\right,
Megoldás a(z) x változóra
x=y\left(\lambda -1\right)
Grafikon
Megosztás
Átmásolva a vágólapra
y\lambda -y=x
Megcseréljük az oldalakat, hogy minden változót tartalmazó tag a bal oldalon legyen.
\left(\lambda -1\right)y=x
Összevonunk minden tagot, amelyben szerepel y.
\frac{\left(\lambda -1\right)y}{\lambda -1}=\frac{x}{\lambda -1}
Mindkét oldalt elosztjuk ennyivel: \lambda -1.
y=\frac{x}{\lambda -1}
A(z) \lambda -1 értékkel való osztás eltünteti a(z) \lambda -1 értékkel való szorzást.
y\lambda -y=x
Megcseréljük az oldalakat, hogy minden változót tartalmazó tag a bal oldalon legyen.
\left(\lambda -1\right)y=x
Összevonunk minden tagot, amelyben szerepel y.
\frac{\left(\lambda -1\right)y}{\lambda -1}=\frac{x}{\lambda -1}
Mindkét oldalt elosztjuk ennyivel: \lambda -1.
y=\frac{x}{\lambda -1}
A(z) \lambda -1 értékkel való osztás eltünteti a(z) \lambda -1 értékkel való szorzást.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}