Megoldás a(z) a változóra
a=\frac{17-c-3b}{5}
Megoldás a(z) b változóra
b=\frac{17-c-5a}{3}
Megosztás
Átmásolva a vágólapra
5a+c=17-3b
Mindkét oldalból kivonjuk a következőt: 3b.
5a=17-3b-c
Mindkét oldalból kivonjuk a következőt: c.
5a=17-c-3b
Az egyenlet kanonikus alakban van.
\frac{5a}{5}=\frac{17-c-3b}{5}
Mindkét oldalt elosztjuk ennyivel: 5.
a=\frac{17-c-3b}{5}
A(z) 5 értékkel való osztás eltünteti a(z) 5 értékkel való szorzást.
3b+c=17-5a
Mindkét oldalból kivonjuk a következőt: 5a.
3b=17-5a-c
Mindkét oldalból kivonjuk a következőt: c.
3b=17-c-5a
Az egyenlet kanonikus alakban van.
\frac{3b}{3}=\frac{17-c-5a}{3}
Mindkét oldalt elosztjuk ennyivel: 3.
b=\frac{17-c-5a}{3}
A(z) 3 értékkel való osztás eltünteti a(z) 3 értékkel való szorzást.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}