Ugrás a tartalomra
Megoldás a(z) x változóra
Tick mark Image
Grafikon

Hasonló feladatok a webes keresésből

Megosztás

2x^{2}-5x+1-4=0
Mindkét oldalból kivonjuk a következőt: 4.
2x^{2}-5x-3=0
Kivonjuk a(z) 4 értékből a(z) 1 értéket. Az eredmény -3.
a+b=-5 ab=2\left(-3\right)=-6
Az egyenlet megoldásához csoportosítással tényezőkre bontjuk az egyenlőségjeltől balra lévő kifejezést úgy, hogy először átírjuk 2x^{2}+ax+bx-3 alakúvá. A a és b megkereséséhez állítson be egy rendszer-egy rendszert.
1,-6 2,-3
Mivel a ab negatív, a és b rendelkezik a megfelelő előjel között. Mivel a a+b negatív, a negatív szám nagyobb abszolút értéket tartalmaz, mint a pozitív érték. Listát készítünk minden olyan egész párról, amelynek szorzata -6.
1-6=-5 2-3=-1
Kiszámítjuk az egyes párok összegét.
a=-6 b=1
A megoldás az a pár, amelynek összege -5.
\left(2x^{2}-6x\right)+\left(x-3\right)
Átírjuk az értéket (2x^{2}-5x-3) \left(2x^{2}-6x\right)+\left(x-3\right) alakban.
2x\left(x-3\right)+x-3
Emelje ki a(z) 2x elemet a(z) 2x^{2}-6x kifejezésből.
\left(x-3\right)\left(2x+1\right)
A disztributivitási tulajdonság használatával emelje ki a(z) x-3 általános kifejezést a zárójelből.
x=3 x=-\frac{1}{2}
Az egyenletmegoldások kereséséhez, a x-3=0 és a 2x+1=0.
2x^{2}-5x+1=4
Minden ax^{2}+bx+c=0 alakú egyenlet megoldható a másodfokú egyenlet megoldóképletével: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A megoldóképlet két megoldást ad, az egyik az, amikor a ± összeadás, a másik amikor kivonás.
2x^{2}-5x+1-4=4-4
Kivonjuk az egyenlet mindkét oldalából a következőt: 4.
2x^{2}-5x+1-4=0
Ha kivonjuk a(z) 4 értéket önmagából, az eredmény 0 lesz.
2x^{2}-5x-3=0
4 kivonása a következőből: 1.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 2\left(-3\right)}}{2\times 2}
Ez az egyenlet kanonikus alakban van: ax^{2}+bx+c=0. Behelyettesítjük a(z) 2 értéket a-ba, a(z) -5 értéket b-be és a(z) -3 értéket c-be a megoldóképletben: \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 2\left(-3\right)}}{2\times 2}
Négyzetre emeljük a következőt: -5.
x=\frac{-\left(-5\right)±\sqrt{25-8\left(-3\right)}}{2\times 2}
Összeszorozzuk a következőket: -4 és 2.
x=\frac{-\left(-5\right)±\sqrt{25+24}}{2\times 2}
Összeszorozzuk a következőket: -8 és -3.
x=\frac{-\left(-5\right)±\sqrt{49}}{2\times 2}
Összeadjuk a következőket: 25 és 24.
x=\frac{-\left(-5\right)±7}{2\times 2}
Négyzetgyököt vonunk a következőből: 49.
x=\frac{5±7}{2\times 2}
-5 ellentettje 5.
x=\frac{5±7}{4}
Összeszorozzuk a következőket: 2 és 2.
x=\frac{12}{4}
Megoldjuk az egyenletet (x=\frac{5±7}{4}). ± előjele pozitív. Összeadjuk a következőket: 5 és 7.
x=3
12 elosztása a következővel: 4.
x=-\frac{2}{4}
Megoldjuk az egyenletet (x=\frac{5±7}{4}). ± előjele negatív. 7 kivonása a következőből: 5.
x=-\frac{1}{2}
A törtet (\frac{-2}{4}) leegyszerűsítjük 2 kivonásával és kiejtésével.
x=3 x=-\frac{1}{2}
Megoldottuk az egyenletet.
2x^{2}-5x+1=4
Az ehhez hasonló másodfokú egyenletek teljes négyzetté alakítással oldhatók meg. A teljes négyzetté alakításhoz az egyenletet először x^{2}+bx=c alakra kell hozni.
2x^{2}-5x+1-1=4-1
Kivonjuk az egyenlet mindkét oldalából a következőt: 1.
2x^{2}-5x=4-1
Ha kivonjuk a(z) 1 értéket önmagából, az eredmény 0 lesz.
2x^{2}-5x=3
1 kivonása a következőből: 4.
\frac{2x^{2}-5x}{2}=\frac{3}{2}
Mindkét oldalt elosztjuk ennyivel: 2.
x^{2}-\frac{5}{2}x=\frac{3}{2}
A(z) 2 értékkel való osztás eltünteti a(z) 2 értékkel való szorzást.
x^{2}-\frac{5}{2}x+\left(-\frac{5}{4}\right)^{2}=\frac{3}{2}+\left(-\frac{5}{4}\right)^{2}
Elosztjuk a(z) -\frac{5}{2} értéket, az x-es tag együtthatóját 2-vel; ennek eredménye -\frac{5}{4}. Ezután hozzáadjuk -\frac{5}{4} négyzetét az egyenlet mindkét oldalához. Ezzel a lépéssel teljes négyzetté alakítottuk az egyenlet bal oldalát.
x^{2}-\frac{5}{2}x+\frac{25}{16}=\frac{3}{2}+\frac{25}{16}
A(z) -\frac{5}{4} négyzetre emeléséhez a tört számlálóját és nevezőjét is négyzetre emeljük.
x^{2}-\frac{5}{2}x+\frac{25}{16}=\frac{49}{16}
\frac{3}{2} és \frac{25}{16} összeadásához megkeressük a közös nevezőt, majd összeadjuk a számlálókat. Ezután ha lehetséges, egyszerűsítjük a törtet.
\left(x-\frac{5}{4}\right)^{2}=\frac{49}{16}
Tényezőkre x^{2}-\frac{5}{2}x+\frac{25}{16}. Ha x^{2}+bx+c egy tökéletes négyzet, akkor mindig \left(x+\frac{b}{2}\right)^{2} lehet szorzattá tenni.
\sqrt{\left(x-\frac{5}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Az egyenlet mindkét oldalából négyzetgyököt vonunk.
x-\frac{5}{4}=\frac{7}{4} x-\frac{5}{4}=-\frac{7}{4}
Egyszerűsítünk.
x=3 x=-\frac{1}{2}
Hozzáadjuk az egyenlet mindkét oldalához a következőt: \frac{5}{4}.