Megoldás a(z) c változóra
\left\{\begin{matrix}\\c=300m\mu \text{, }&\text{unconditionally}\\c\in \mathrm{R}\text{, }&l=0\text{ or }\mu =0\end{matrix}\right,
Megoldás a(z) l változóra
\left\{\begin{matrix}\\l=0\text{, }&\text{unconditionally}\\l\in \mathrm{R}\text{, }&c=300m\mu \text{ or }\mu =0\end{matrix}\right,
Megosztás
Átmásolva a vágólapra
100\mu ^{2}m\times 150l=50\mu lc
Összeszorozzuk a következőket: \mu és \mu . Az eredmény \mu ^{2}.
15000\mu ^{2}ml=50\mu lc
Összeszorozzuk a következőket: 100 és 150. Az eredmény 15000.
50\mu lc=15000\mu ^{2}ml
Megcseréljük az oldalakat, hogy minden változót tartalmazó tag a bal oldalon legyen.
50l\mu c=15000lm\mu ^{2}
Az egyenlet kanonikus alakban van.
\frac{50l\mu c}{50l\mu }=\frac{15000lm\mu ^{2}}{50l\mu }
Mindkét oldalt elosztjuk ennyivel: 50\mu l.
c=\frac{15000lm\mu ^{2}}{50l\mu }
A(z) 50\mu l értékkel való osztás eltünteti a(z) 50\mu l értékkel való szorzást.
c=300m\mu
15000\mu ^{2}ml elosztása a következővel: 50\mu l.
100\mu ^{2}m\times 150l=50\mu lc
Összeszorozzuk a következőket: \mu és \mu . Az eredmény \mu ^{2}.
15000\mu ^{2}ml=50\mu lc
Összeszorozzuk a következőket: 100 és 150. Az eredmény 15000.
15000\mu ^{2}ml-50\mu lc=0
Mindkét oldalból kivonjuk a következőt: 50\mu lc.
\left(15000\mu ^{2}m-50\mu c\right)l=0
Összevonunk minden tagot, amelyben szerepel l.
\left(15000m\mu ^{2}-50c\mu \right)l=0
Az egyenlet kanonikus alakban van.
l=0
0 elosztása a következővel: 15000\mu ^{2}m-50\mu c.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}