Megoldás a(z) x változóra
x = -\frac{11}{2} = -5\frac{1}{2} = -5,5
Grafikon
Megosztás
Átmásolva a vágólapra
-\left(2x+7-\left(-1+3x-\left(-4x\right)-9-\left(3x+4\right)\right)-29\right)=-3
-4x+9 ellentettjének meghatározásához megkeressük az egyes tagok ellentettjét.
-\left(2x+7-\left(-1+3x+4x-9-\left(3x+4\right)\right)-29\right)=-3
-4x ellentettje 4x.
-\left(2x+7-\left(-1+7x-9-\left(3x+4\right)\right)-29\right)=-3
Összevonjuk a következőket: 3x és 4x. Az eredmény 7x.
-\left(2x+7-\left(-10+7x-\left(3x+4\right)\right)-29\right)=-3
Kivonjuk a(z) 9 értékből a(z) -1 értéket. Az eredmény -10.
-\left(2x+7-\left(-10+7x-3x-4\right)-29\right)=-3
3x+4 ellentettjének meghatározásához megkeressük az egyes tagok ellentettjét.
-\left(2x+7-\left(-10+4x-4\right)-29\right)=-3
Összevonjuk a következőket: 7x és -3x. Az eredmény 4x.
-\left(2x+7-\left(-14+4x\right)-29\right)=-3
Kivonjuk a(z) 4 értékből a(z) -10 értéket. Az eredmény -14.
-\left(2x+7-\left(-14\right)-4x-29\right)=-3
-14+4x ellentettjének meghatározásához megkeressük az egyes tagok ellentettjét.
-\left(2x+7+14-4x-29\right)=-3
-14 ellentettje 14.
-\left(2x+21-4x-29\right)=-3
Összeadjuk a következőket: 7 és 14. Az eredmény 21.
-\left(-2x+21-29\right)=-3
Összevonjuk a következőket: 2x és -4x. Az eredmény -2x.
-\left(-2x-8\right)=-3
Kivonjuk a(z) 29 értékből a(z) 21 értéket. Az eredmény -8.
-\left(-2x\right)-\left(-8\right)=-3
-2x-8 ellentettjének meghatározásához megkeressük az egyes tagok ellentettjét.
2x-\left(-8\right)=-3
-2x ellentettje 2x.
2x+8=-3
-8 ellentettje 8.
2x=-3-8
Mindkét oldalból kivonjuk a következőt: 8.
2x=-11
Kivonjuk a(z) 8 értékből a(z) -3 értéket. Az eredmény -11.
x=\frac{-11}{2}
Mindkét oldalt elosztjuk ennyivel: 2.
x=-\frac{11}{2}
A(z) \frac{-11}{2} tört felírható -\frac{11}{2} alakban is, ha töröljük a mínuszjelet.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}