Kiértékelés
\frac{1536}{\left(yz\right)^{6}}
Differenciálás y szerint
-\frac{9216}{z^{6}y^{7}}
Megosztás
Átmásolva a vágólapra
\frac{-\frac{3}{7}\times 2^{8}}{-\frac{1}{14}y^{6}z^{6}}
Kiejtjük ezt az értéket a számlálóban és a nevezőben is: x^{5}.
\frac{-\frac{3}{7}\times 256}{-\frac{1}{14}y^{6}z^{6}}
Kiszámoljuk a(z) 2 érték 8. hatványát. Az eredmény 256.
\frac{-\frac{768}{7}}{-\frac{1}{14}y^{6}z^{6}}
Összeszorozzuk a következőket: -\frac{3}{7} és 256. Az eredmény -\frac{768}{7}.
\frac{-768}{7\left(-\frac{1}{14}\right)y^{6}z^{6}}
Kifejezzük a hányadost (\frac{-\frac{768}{7}}{-\frac{1}{14}y^{6}z^{6}}) egyetlen törtként.
\frac{-768}{-\frac{1}{2}y^{6}z^{6}}
Összeszorozzuk a következőket: 7 és -\frac{1}{14}. Az eredmény -\frac{1}{2}.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}