Ugrás a tartalomra
Megoldás a(z) x változóra
Tick mark Image
Grafikon

Hasonló feladatok a webes keresésből

Megosztás

x^{2}+x-20=-8
A disztributivitás felhasználásával összeszorozzuk a kifejezéseket (x-4 és x+5), majd összevonjuk az egynemű tagokat.
x^{2}+x-20+8=0
Bővítsük az egyenlet mindkét oldalát ezzel: 8.
x^{2}+x-12=0
Összeadjuk a következőket: -20 és 8. Az eredmény -12.
x=\frac{-1±\sqrt{1^{2}-4\left(-12\right)}}{2}
Ez az egyenlet kanonikus alakban van: ax^{2}+bx+c=0. Behelyettesítjük a(z) 1 értéket a-ba, a(z) 1 értéket b-be és a(z) -12 értéket c-be a megoldóképletben: \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-12\right)}}{2}
Négyzetre emeljük a következőt: 1.
x=\frac{-1±\sqrt{1+48}}{2}
Összeszorozzuk a következőket: -4 és -12.
x=\frac{-1±\sqrt{49}}{2}
Összeadjuk a következőket: 1 és 48.
x=\frac{-1±7}{2}
Négyzetgyököt vonunk a következőből: 49.
x=\frac{6}{2}
Megoldjuk az egyenletet (x=\frac{-1±7}{2}). ± előjele pozitív. Összeadjuk a következőket: -1 és 7.
x=3
6 elosztása a következővel: 2.
x=-\frac{8}{2}
Megoldjuk az egyenletet (x=\frac{-1±7}{2}). ± előjele negatív. 7 kivonása a következőből: -1.
x=-4
-8 elosztása a következővel: 2.
x=3 x=-4
Megoldottuk az egyenletet.
x^{2}+x-20=-8
A disztributivitás felhasználásával összeszorozzuk a kifejezéseket (x-4 és x+5), majd összevonjuk az egynemű tagokat.
x^{2}+x=-8+20
Bővítsük az egyenlet mindkét oldalát ezzel: 20.
x^{2}+x=12
Összeadjuk a következőket: -8 és 20. Az eredmény 12.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=12+\left(\frac{1}{2}\right)^{2}
Elosztjuk a(z) 1 értéket, az x-es tag együtthatóját 2-vel; ennek eredménye \frac{1}{2}. Ezután hozzáadjuk \frac{1}{2} négyzetét az egyenlet mindkét oldalához. Ezzel a lépéssel teljes négyzetté alakítottuk az egyenlet bal oldalát.
x^{2}+x+\frac{1}{4}=12+\frac{1}{4}
A(z) \frac{1}{2} négyzetre emeléséhez a tört számlálóját és nevezőjét is négyzetre emeljük.
x^{2}+x+\frac{1}{4}=\frac{49}{4}
Összeadjuk a következőket: 12 és \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{49}{4}
Tényezőkre x^{2}+x+\frac{1}{4}. Ha x^{2}+bx+c egy tökéletes négyzet, akkor mindig \left(x+\frac{b}{2}\right)^{2} lehet szorzattá tenni.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Az egyenlet mindkét oldalából négyzetgyököt vonunk.
x+\frac{1}{2}=\frac{7}{2} x+\frac{1}{2}=-\frac{7}{2}
Egyszerűsítünk.
x=3 x=-4
Kivonjuk az egyenlet mindkét oldalából a következőt: \frac{1}{2}.