Megoldás a(z) k változóra
k=\sqrt{2}-\frac{3}{2}\approx -0,085786438
k=-\sqrt{2}-\frac{3}{2}\approx -2,914213562
Megosztás
Átmásolva a vágólapra
2k+3=2\sqrt{2} 2k+3=-2\sqrt{2}
Az egyenlet mindkét oldalából négyzetgyököt vonunk.
2k+3-3=2\sqrt{2}-3 2k+3-3=-2\sqrt{2}-3
Kivonjuk az egyenlet mindkét oldalából a következőt: 3.
2k=2\sqrt{2}-3 2k=-2\sqrt{2}-3
Ha kivonjuk a(z) 3 értéket önmagából, az eredmény 0 lesz.
2k=2\sqrt{2}-3
3 kivonása a következőből: 2\sqrt{2}.
2k=-2\sqrt{2}-3
3 kivonása a következőből: -2\sqrt{2}.
\frac{2k}{2}=\frac{2\sqrt{2}-3}{2} \frac{2k}{2}=\frac{-2\sqrt{2}-3}{2}
Mindkét oldalt elosztjuk ennyivel: 2.
k=\frac{2\sqrt{2}-3}{2} k=\frac{-2\sqrt{2}-3}{2}
A(z) 2 értékkel való osztás eltünteti a(z) 2 értékkel való szorzást.
k=\sqrt{2}-\frac{3}{2}
2\sqrt{2}-3 elosztása a következővel: 2.
k=-\sqrt{2}-\frac{3}{2}
-2\sqrt{2}-3 elosztása a következővel: 2.
k=\sqrt{2}-\frac{3}{2} k=-\sqrt{2}-\frac{3}{2}
Megoldottuk az egyenletet.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}