Megoldás a(z) x változóra
x=13
Megoldás a(z) x változóra (complex solution)
x=\frac{i\pi n_{1}}{5\ln(2)}+13
n_{1}\in \mathrm{Z}
Grafikon
Megosztás
Átmásolva a vágólapra
2^{31}\times 4^{50}=2\times 4^{5x}
Az egyenlet mindkét oldalát megszorozzuk a következővel: 2.
2147483648\times 4^{50}=2\times 4^{5x}
Kiszámoljuk a(z) 2 érték 31. hatványát. Az eredmény 2147483648.
2147483648\times 1267650600228229401496703205376=2\times 4^{5x}
Kiszámoljuk a(z) 4 érték 50. hatványát. Az eredmény 1267650600228229401496703205376.
2722258935367507707706996859454145691648=2\times 4^{5x}
Összeszorozzuk a következőket: 2147483648 és 1267650600228229401496703205376. Az eredmény 2722258935367507707706996859454145691648.
2\times 4^{5x}=2722258935367507707706996859454145691648
Megcseréljük az oldalakat, hogy minden változót tartalmazó tag a bal oldalon legyen.
4^{5x}=\frac{2722258935367507707706996859454145691648}{2}
Mindkét oldalt elosztjuk ennyivel: 2.
4^{5x}=1361129467683753853853498429727072845824
Elosztjuk a(z) 2722258935367507707706996859454145691648 értéket a(z) 2 értékkel. Az eredmény 1361129467683753853853498429727072845824.
\log(4^{5x})=\log(1361129467683753853853498429727072845824)
Az egyenlet mindkét oldalának vesszük a logaritmusát.
5x\log(4)=\log(1361129467683753853853498429727072845824)
Egy hatványkitevőre emelt szám logaritmusa ugyanaz, mint a szám logaritmusa megszorozva a hatványkitevővel.
5x=\frac{\log(1361129467683753853853498429727072845824)}{\log(4)}
Mindkét oldalt elosztjuk ennyivel: \log(4).
5x=\log_{4}\left(1361129467683753853853498429727072845824\right)
Az alapváltás képlete szerint \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
x=\frac{65}{5}
Mindkét oldalt elosztjuk ennyivel: 5.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}