Ugrás a tartalomra
Differenciálás x szerint
Tick mark Image
Kiértékelés
Tick mark Image
Grafikon

Megosztás

\cos(5x^{1})\frac{\mathrm{d}}{\mathrm{d}x}(5x^{1})
Ha az F függvény az f\left(u\right) és az u=g\left(x\right) differenciálható függvények kompozíciója, azaz F\left(x\right)=f\left(g\left(x\right)\right), akkor F deriváltja az f függvény u szerinti deriváltjának és a g függvény x szerinti deriváltjának a szorzata, vagyis \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
\cos(5x^{1})\times 5x^{1-1}
Egy polinom deriváltja a tagok deriváltjainak összege. Bármely konstans tag deriváltja 0. ax^{n} deriváltja nax^{n-1}.
5\cos(5x^{1})
Egyszerűsítünk.
5\cos(5x)
Minden t tagra, t^{1}=t.