Ugrás a tartalomra
Megoldás a(z) l változóra
Tick mark Image

Hasonló feladatok a webes keresésből

Megosztás

\left(Im(\frac{1}{m^{2}+m+1})\left(Re(m^{2})-Re(m)+1\right)+Re(\frac{1}{m^{2}+m+1})\left(Im(m^{2})-Im(m)\right)\right)l=1
Az egyenlet kanonikus alakban van.
\frac{\left(Im(\frac{1}{m^{2}+m+1})\left(Re(m^{2})-Re(m)+1\right)+Re(\frac{1}{m^{2}+m+1})\left(Im(m^{2})-Im(m)\right)\right)l}{Im(\frac{1}{m^{2}+m+1})\left(Re(m^{2})-Re(m)+1\right)+Re(\frac{1}{m^{2}+m+1})\left(Im(m^{2})-Im(m)\right)}=\frac{1}{Im(\frac{1}{m^{2}+m+1})\left(Re(m^{2})-Re(m)+1\right)+Re(\frac{1}{m^{2}+m+1})\left(Im(m^{2})-Im(m)\right)}
Mindkét oldalt elosztjuk ennyivel: \left(Re(m^{2})-Re(m)+1\right)Im(\left(m^{2}+m+1\right)^{-1})+\left(Im(m^{2})-Im(m)\right)Re(\left(m^{2}+m+1\right)^{-1}).
l=\frac{1}{Im(\frac{1}{m^{2}+m+1})\left(Re(m^{2})-Re(m)+1\right)+Re(\frac{1}{m^{2}+m+1})\left(Im(m^{2})-Im(m)\right)}
A(z) \left(Re(m^{2})-Re(m)+1\right)Im(\left(m^{2}+m+1\right)^{-1})+\left(Im(m^{2})-Im(m)\right)Re(\left(m^{2}+m+1\right)^{-1}) értékkel való osztás eltünteti a(z) \left(Re(m^{2})-Re(m)+1\right)Im(\left(m^{2}+m+1\right)^{-1})+\left(Im(m^{2})-Im(m)\right)Re(\left(m^{2}+m+1\right)^{-1}) értékkel való szorzást.