Ugrás a tartalomra
Kiértékelés
Tick mark Image

Hasonló feladatok a webes keresésből

Megosztás

\int 3x^{2}-x^{5}\mathrm{d}x
Először a határozatlan integrál kiértékelése
\int 3x^{2}\mathrm{d}x+\int -x^{5}\mathrm{d}x
Az összeg integrálása tagonként
3\int x^{2}\mathrm{d}x-\int x^{5}\mathrm{d}x
Az állandó kiemelése minden egyes tagban
x^{3}-\int x^{5}\mathrm{d}x
Mivel \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, cserélje \int x^{2}\mathrm{d}x \frac{x^{3}}{3}. Összeszorozzuk a következőket: 3 és \frac{x^{3}}{3}.
x^{3}-\frac{x^{6}}{6}
Mivel \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, cserélje \int x^{5}\mathrm{d}x \frac{x^{6}}{6}. Összeszorozzuk a következőket: -1 és \frac{x^{6}}{6}.
5^{3}-\frac{5^{6}}{6}-\left(3^{3}-\frac{3^{6}}{6}\right)
A határozott integrál értéke a kifejezés primitív függvényének helyettesítési értéke az integrálás felső határán mínusz a primitív függvény helyettesítési értéke az integrálás alsó határán.
-\frac{7154}{3}
Egyszerűsítünk.