Kiértékelés
-540
Megosztás
Átmásolva a vágólapra
\int 15t^{3}-135t^{2}+225t\mathrm{d}t
Először a határozatlan integrál kiértékelése
\int 15t^{3}\mathrm{d}t+\int -135t^{2}\mathrm{d}t+\int 225t\mathrm{d}t
Az összeg integrálása tagonként
15\int t^{3}\mathrm{d}t-135\int t^{2}\mathrm{d}t+225\int t\mathrm{d}t
Az állandó kiemelése minden egyes tagban
\frac{15t^{4}}{4}-135\int t^{2}\mathrm{d}t+225\int t\mathrm{d}t
Mivel \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} k\neq -1, cserélje \int t^{3}\mathrm{d}t \frac{t^{4}}{4}. Összeszorozzuk a következőket: 15 és \frac{t^{4}}{4}.
\frac{15t^{4}}{4}-45t^{3}+225\int t\mathrm{d}t
Mivel \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} k\neq -1, cserélje \int t^{2}\mathrm{d}t \frac{t^{3}}{3}. Összeszorozzuk a következőket: -135 és \frac{t^{3}}{3}.
\frac{15t^{4}}{4}-45t^{3}+\frac{225t^{2}}{2}
Mivel \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} k\neq -1, cserélje \int t\mathrm{d}t \frac{t^{2}}{2}. Összeszorozzuk a következőket: 225 és \frac{t^{2}}{2}.
\frac{15}{4}\times 5^{4}-45\times 5^{3}+\frac{225}{2}\times 5^{2}-\left(\frac{15}{4}\times 1^{4}-45\times 1^{3}+\frac{225}{2}\times 1^{2}\right)
A határozott integrál értéke a kifejezés primitív függvényének helyettesítési értéke az integrálás felső határán mínusz a primitív függvény helyettesítési értéke az integrálás alsó határán.
-540
Egyszerűsítünk.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}