Ugrás a tartalomra
Kiértékelés
Tick mark Image
Differenciálás x szerint
Tick mark Image

Hasonló feladatok a webes keresésből

Megosztás

\int x^{2}+6x+9\mathrm{d}x
Binomiális tétel (\left(a+b\right)^{2}=a^{2}+2ab+b^{2}) használatával kibontjuk a képletet (\left(x+3\right)^{2}).
\int x^{2}\mathrm{d}x+\int 6x\mathrm{d}x+\int 9\mathrm{d}x
Az összeg integrálása tagonként
\int x^{2}\mathrm{d}x+6\int x\mathrm{d}x+\int 9\mathrm{d}x
Az állandó kiemelése minden egyes tagban
\frac{x^{3}}{3}+6\int x\mathrm{d}x+\int 9\mathrm{d}x
Mivel \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, cserélje \int x^{2}\mathrm{d}x \frac{x^{3}}{3}.
\frac{x^{3}}{3}+3x^{2}+\int 9\mathrm{d}x
Mivel \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, cserélje \int x\mathrm{d}x \frac{x^{2}}{2}. Összeszorozzuk a következőket: 6 és \frac{x^{2}}{2}.
\frac{x^{3}}{3}+3x^{2}+9x
A 9 az általános integrálások táblájában használt táblázat használatával megkeresheti a \int a\mathrm{d}x=ax.
\frac{x^{3}}{3}+3x^{2}+9x+С
Ha F\left(x\right) egy f\left(x\right), akkor a f\left(x\right) összes antiderivatives készlete F\left(x\right)+C. Ezért adja hozzá az integráció állandót C\in \mathrm{R} az eredménybe.