Kiértékelés
\frac{2x^{5}}{5}-\frac{3x^{4}}{2}+\frac{5x^{3}}{3}-\frac{15x^{2}}{2}+С
Differenciálás x szerint
x\left(x-3\right)\left(2x^{2}+5\right)
Megosztás
Átmásolva a vágólapra
\int 2x^{4}-6x^{3}+5x^{2}-15x\mathrm{d}x
A disztributivitás felhasználásával összeszorozzuk a következőket: 2x^{2}+5 és x^{2}-3x.
\int 2x^{4}\mathrm{d}x+\int -6x^{3}\mathrm{d}x+\int 5x^{2}\mathrm{d}x+\int -15x\mathrm{d}x
Az összeg integrálása tagonként
2\int x^{4}\mathrm{d}x-6\int x^{3}\mathrm{d}x+5\int x^{2}\mathrm{d}x-15\int x\mathrm{d}x
Az állandó kiemelése minden egyes tagban
\frac{2x^{5}}{5}-6\int x^{3}\mathrm{d}x+5\int x^{2}\mathrm{d}x-15\int x\mathrm{d}x
Mivel \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, cserélje \int x^{4}\mathrm{d}x \frac{x^{5}}{5}. Összeszorozzuk a következőket: 2 és \frac{x^{5}}{5}.
\frac{2x^{5}}{5}-\frac{3x^{4}}{2}+5\int x^{2}\mathrm{d}x-15\int x\mathrm{d}x
Mivel \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, cserélje \int x^{3}\mathrm{d}x \frac{x^{4}}{4}. Összeszorozzuk a következőket: -6 és \frac{x^{4}}{4}.
\frac{2x^{5}}{5}-\frac{3x^{4}}{2}+\frac{5x^{3}}{3}-15\int x\mathrm{d}x
Mivel \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, cserélje \int x^{2}\mathrm{d}x \frac{x^{3}}{3}. Összeszorozzuk a következőket: 5 és \frac{x^{3}}{3}.
\frac{2x^{5}}{5}-\frac{3x^{4}}{2}+\frac{5x^{3}}{3}-\frac{15x^{2}}{2}
Mivel \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, cserélje \int x\mathrm{d}x \frac{x^{2}}{2}. Összeszorozzuk a következőket: -15 és \frac{x^{2}}{2}.
\frac{2x^{5}}{5}-\frac{3x^{4}}{2}+\frac{5x^{3}}{3}-\frac{15x^{2}}{2}+С
Ha F\left(x\right) egy f\left(x\right), akkor a f\left(x\right) összes antiderivatives készlete F\left(x\right)+C. Ezért adja hozzá az integráció állandót C\in \mathrm{R} az eredménybe.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}