Ugrás a tartalomra
Kiértékelés
Tick mark Image
Differenciálás x szerint
Tick mark Image

Hasonló feladatok a webes keresésből

Megosztás

\left(\frac{-e^{xz}+xze^{xz}}{z^{2}}+С_{3}\right)x-\frac{x^{2}e^{xz}}{z}+\frac{2\left(-e^{xz}+xze^{xz}\right)}{z^{3}}
Egyszerűsítünk.
\int \frac{x^{2}}{2}\mathrm{d}x+\int С_{4}\mathrm{d}x
Az összeg integrálása tagonként
\frac{\int x^{2}\mathrm{d}x}{2}+\int С_{4}\mathrm{d}x
Az állandó kiemelése minden egyes tagban
\frac{x^{3}}{6}+\int С_{4}\mathrm{d}x
Mivel \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, cserélje \int x^{2}\mathrm{d}x \frac{x^{3}}{3}. Összeszorozzuk a következőket: \frac{1}{2} és \frac{x^{3}}{3}.
\frac{x^{3}}{6}+С_{4}x
A С_{4} az általános integrálások táblájában használt táblázat használatával megkeresheti a \int a\mathrm{d}x=ax.
\left\{\begin{matrix}\left(\frac{-e^{xz}+xze^{xz}}{z^{2}}+С_{3}\right)x-\frac{x^{2}e^{xz}}{z}+\frac{2\left(-e^{xz}+xze^{xz}\right)}{z^{3}}+С_{7},&\\\frac{x^{3}}{6}+С_{4}x+С_{7},&\end{matrix}\right,
Ha F\left(x\right) egy f\left(x\right), akkor a f\left(x\right) összes antiderivatives készlete F\left(x\right)+C. Ezért adja hozzá az integráció állandót C\in \mathrm{R} az eredménybe.