Ugrás a tartalomra
Differenciálás j_33965 szerint
Tick mark Image
Kiértékelés
Tick mark Image

Hasonló feladatok a webes keresésből

Megosztás

\frac{\left(-j_{33965}^{1}+325\right)\frac{\mathrm{d}}{\mathrm{d}j_{33965}}(-j_{33965}^{1})-\left(-j_{33965}^{1}\frac{\mathrm{d}}{\mathrm{d}j_{33965}}(-j_{33965}^{1}+325)\right)}{\left(-j_{33965}^{1}+325\right)^{2}}
Bármely két differenciálható függvény esetén a két függvény hányadosának deriváltja egyenlő a nevező szorozva a számláló deriváltjával mínusz a számláló szorozva a nevező deriváltjával, majd ez az eredmény osztva a nevező négyzetével.
\frac{\left(-j_{33965}^{1}+325\right)\left(-1\right)j_{33965}^{1-1}-\left(-j_{33965}^{1}\left(-1\right)j_{33965}^{1-1}\right)}{\left(-j_{33965}^{1}+325\right)^{2}}
Egy polinom deriváltja a tagok deriváltjainak összege. Bármely konstans tag deriváltja 0. ax^{n} deriváltja nax^{n-1}.
\frac{\left(-j_{33965}^{1}+325\right)\left(-1\right)j_{33965}^{0}-\left(-j_{33965}^{1}\left(-1\right)j_{33965}^{0}\right)}{\left(-j_{33965}^{1}+325\right)^{2}}
Elvégezzük a számolást.
\frac{-j_{33965}^{1}\left(-1\right)j_{33965}^{0}+325\left(-1\right)j_{33965}^{0}-\left(-j_{33965}^{1}\left(-1\right)j_{33965}^{0}\right)}{\left(-j_{33965}^{1}+325\right)^{2}}
Felbontjuk a zárójelet a disztributivitás felhasználásával.
\frac{-\left(-1\right)j_{33965}^{1}+325\left(-1\right)j_{33965}^{0}-\left(-\left(-1\right)j_{33965}^{1}\right)}{\left(-j_{33965}^{1}+325\right)^{2}}
Azonos alapú hatványok szorzásához összeadjuk a kitevőjüket.
\frac{j_{33965}^{1}-325j_{33965}^{0}-j_{33965}^{1}}{\left(-j_{33965}^{1}+325\right)^{2}}
Elvégezzük a számolást.
\frac{\left(1-1\right)j_{33965}^{1}-325j_{33965}^{0}}{\left(-j_{33965}^{1}+325\right)^{2}}
Összevonjuk az egynemű kifejezéseket.
\frac{-325j_{33965}^{0}}{\left(-j_{33965}^{1}+325\right)^{2}}
1 kivonása a következőből: 1.
\frac{-325j_{33965}^{0}}{\left(-j_{33965}+325\right)^{2}}
Minden t tagra, t^{1}=t.
\frac{-325}{\left(-j_{33965}+325\right)^{2}}
Az 0 kivételével minden t tagra, t^{0}=1.