Megoldás a(z) A változóra
A=-\left(\frac{x}{y}\right)^{2}\left(B-9y^{2}\right)
x\neq 0\text{ and }y\neq 0
Megoldás a(z) B változóra
B=-\left(\frac{y}{x}\right)^{2}\left(A-9x^{2}\right)
x\neq 0\text{ and }y\neq 0
Grafikon
Teszt
Linear Equation
5 ehhez hasonló probléma:
\frac { A } { x ^ { 2 } } + \frac { B } { y ^ { 2 } } = 9
Megosztás
Átmásolva a vágólapra
y^{2}A+x^{2}B=9x^{2}y^{2}
Az egyenlet mindkét oldalát megszorozzuk x^{2},y^{2} legkisebb közös többszörösével, azaz ennyivel: x^{2}y^{2}.
y^{2}A=9x^{2}y^{2}-x^{2}B
Mindkét oldalból kivonjuk a következőt: x^{2}B.
Ay^{2}=9x^{2}y^{2}-Bx^{2}
Átrendezzük a tagokat.
y^{2}A=9x^{2}y^{2}-Bx^{2}
Az egyenlet kanonikus alakban van.
\frac{y^{2}A}{y^{2}}=\frac{x^{2}\left(9y^{2}-B\right)}{y^{2}}
Mindkét oldalt elosztjuk ennyivel: y^{2}.
A=\frac{x^{2}\left(9y^{2}-B\right)}{y^{2}}
A(z) y^{2} értékkel való osztás eltünteti a(z) y^{2} értékkel való szorzást.
y^{2}A+x^{2}B=9x^{2}y^{2}
Az egyenlet mindkét oldalát megszorozzuk x^{2},y^{2} legkisebb közös többszörösével, azaz ennyivel: x^{2}y^{2}.
x^{2}B=9x^{2}y^{2}-y^{2}A
Mindkét oldalból kivonjuk a következőt: y^{2}A.
Bx^{2}=9x^{2}y^{2}-Ay^{2}
Átrendezzük a tagokat.
x^{2}B=9x^{2}y^{2}-Ay^{2}
Az egyenlet kanonikus alakban van.
\frac{x^{2}B}{x^{2}}=\frac{y^{2}\left(9x^{2}-A\right)}{x^{2}}
Mindkét oldalt elosztjuk ennyivel: x^{2}.
B=\frac{y^{2}\left(9x^{2}-A\right)}{x^{2}}
A(z) x^{2} értékkel való osztás eltünteti a(z) x^{2} értékkel való szorzást.
Példák
Másodfokú egyenlet
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineáris egyenlet
y = 3x + 4
Számtan
699 * 533
Mátrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Egyenletrendszer
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenciálszámítás
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrálás
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Határértékek
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}