Prijeđi na glavni sadržaj
Izračunaj
Tick mark Image
Proširi
Tick mark Image
Grafikon

Slični problemi iz pretraživanja weba

Dijeliti

2\left(\frac{3xx}{x}-\frac{1}{x}\right)\left(2x-\frac{3}{x}\right)
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Pomnožite 3x i \frac{x}{x}.
2\times \frac{3xx-1}{x}\left(2x-\frac{3}{x}\right)
Budući da \frac{3xx}{x} i \frac{1}{x} imaju isti nazivnik, oduzmite ih oduzimanje njihovih brojnika.
2\times \frac{3x^{2}-1}{x}\left(2x-\frac{3}{x}\right)
Pomnožite izraz 3xx-1.
2\times \frac{3x^{2}-1}{x}\left(\frac{2xx}{x}-\frac{3}{x}\right)
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Pomnožite 2x i \frac{x}{x}.
2\times \frac{3x^{2}-1}{x}\times \frac{2xx-3}{x}
Budući da \frac{2xx}{x} i \frac{3}{x} imaju isti nazivnik, oduzmite ih oduzimanje njihovih brojnika.
2\times \frac{3x^{2}-1}{x}\times \frac{2x^{2}-3}{x}
Pomnožite izraz 2xx-3.
\frac{2\left(3x^{2}-1\right)}{x}\times \frac{2x^{2}-3}{x}
Izrazite 2\times \frac{3x^{2}-1}{x} kao jedan razlomak.
\frac{2\left(3x^{2}-1\right)\left(2x^{2}-3\right)}{xx}
Pomnožite \frac{2\left(3x^{2}-1\right)}{x} i \frac{2x^{2}-3}{x} tako da pomnožite brojnik s brojnikom i nazivnik s nazivnikom.
\frac{2\left(3x^{2}-1\right)\left(2x^{2}-3\right)}{x^{2}}
Pomnožite x i x da biste dobili x^{2}.
\frac{\left(6x^{2}-2\right)\left(2x^{2}-3\right)}{x^{2}}
Koristite svojstvo distributivnosti da biste pomnožili 2 s 3x^{2}-1.
\frac{12x^{4}-18x^{2}-4x^{2}+6}{x^{2}}
Primijenite svojstvo distributivnosti množenjem svakog dijela izraza 6x^{2}-2 sa svakim dijelom izraza 2x^{2}-3.
\frac{12x^{4}-22x^{2}+6}{x^{2}}
Kombinirajte -18x^{2} i -4x^{2} da biste dobili -22x^{2}.
2\left(\frac{3xx}{x}-\frac{1}{x}\right)\left(2x-\frac{3}{x}\right)
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Pomnožite 3x i \frac{x}{x}.
2\times \frac{3xx-1}{x}\left(2x-\frac{3}{x}\right)
Budući da \frac{3xx}{x} i \frac{1}{x} imaju isti nazivnik, oduzmite ih oduzimanje njihovih brojnika.
2\times \frac{3x^{2}-1}{x}\left(2x-\frac{3}{x}\right)
Pomnožite izraz 3xx-1.
2\times \frac{3x^{2}-1}{x}\left(\frac{2xx}{x}-\frac{3}{x}\right)
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Pomnožite 2x i \frac{x}{x}.
2\times \frac{3x^{2}-1}{x}\times \frac{2xx-3}{x}
Budući da \frac{2xx}{x} i \frac{3}{x} imaju isti nazivnik, oduzmite ih oduzimanje njihovih brojnika.
2\times \frac{3x^{2}-1}{x}\times \frac{2x^{2}-3}{x}
Pomnožite izraz 2xx-3.
\frac{2\left(3x^{2}-1\right)}{x}\times \frac{2x^{2}-3}{x}
Izrazite 2\times \frac{3x^{2}-1}{x} kao jedan razlomak.
\frac{2\left(3x^{2}-1\right)\left(2x^{2}-3\right)}{xx}
Pomnožite \frac{2\left(3x^{2}-1\right)}{x} i \frac{2x^{2}-3}{x} tako da pomnožite brojnik s brojnikom i nazivnik s nazivnikom.
\frac{2\left(3x^{2}-1\right)\left(2x^{2}-3\right)}{x^{2}}
Pomnožite x i x da biste dobili x^{2}.
\frac{\left(6x^{2}-2\right)\left(2x^{2}-3\right)}{x^{2}}
Koristite svojstvo distributivnosti da biste pomnožili 2 s 3x^{2}-1.
\frac{12x^{4}-18x^{2}-4x^{2}+6}{x^{2}}
Primijenite svojstvo distributivnosti množenjem svakog dijela izraza 6x^{2}-2 sa svakim dijelom izraza 2x^{2}-3.
\frac{12x^{4}-22x^{2}+6}{x^{2}}
Kombinirajte -18x^{2} i -4x^{2} da biste dobili -22x^{2}.