Izračunaj x
x=7
Grafikon
Dijeliti
Kopirano u međuspremnik
\left(x+1\right)\left(x+3\right)\left(x-2\right)\left(3+\frac{7x-5}{x^{2}-x-2}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
Varijabla x ne može biti jednaka vrijednostima -3,-1 jer nije definirano dijeljenje nulom. Pomnožite obje strane jednadžbe s 4\left(x+1\right)\left(x+3\right), najmanjim zajedničkim višekratnikom brojeva x+3,4\left(x^{2}+4x+3\right).
\left(x^{2}+4x+3\right)\left(x-2\right)\left(3+\frac{7x-5}{x^{2}-x-2}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
Koristite svojstvo distributivnosti da biste pomnožili x+1 s x+3 i kombinirali slične izraze.
\left(x^{3}+2x^{2}-5x-6\right)\left(3+\frac{7x-5}{x^{2}-x-2}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
Koristite svojstvo distributivnosti da biste pomnožili x^{2}+4x+3 s x-2 i kombinirali slične izraze.
\left(x^{3}+2x^{2}-5x-6\right)\left(3+\frac{7x-5}{\left(x-2\right)\left(x+1\right)}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
Rastavite x^{2}-x-2 na faktore.
\left(x^{3}+2x^{2}-5x-6\right)\left(\frac{3\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}+\frac{7x-5}{\left(x-2\right)\left(x+1\right)}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Pomnožite 3 i \frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}.
\left(x^{3}+2x^{2}-5x-6\right)\left(\frac{3\left(x-2\right)\left(x+1\right)+7x-5}{\left(x-2\right)\left(x+1\right)}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
Budući da \frac{3\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} i \frac{7x-5}{\left(x-2\right)\left(x+1\right)} imaju isti nazivnik, zbrojite ih zbrajanjem njihovih brojnika.
\left(x^{3}+2x^{2}-5x-6\right)\left(\frac{3x^{2}+3x-6x-6+7x-5}{\left(x-2\right)\left(x+1\right)}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
Pomnožite izraz 3\left(x-2\right)\left(x+1\right)+7x-5.
\left(x^{3}+2x^{2}-5x-6\right)\left(\frac{3x^{2}+4x-11}{\left(x-2\right)\left(x+1\right)}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
Kombinirajte slične izraze u 3x^{2}+3x-6x-6+7x-5.
\left(x^{3}+2x^{2}-5x-6\right)\left(\frac{3x^{2}+4x-11}{\left(x-2\right)\left(x+1\right)}-\frac{3x\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Najmanji zajednički višekratnik brojeva \left(x-2\right)\left(x+1\right) i x+1 jest \left(x-2\right)\left(x+1\right). Pomnožite \frac{3x}{x+1} i \frac{x-2}{x-2}.
\left(x^{3}+2x^{2}-5x-6\right)\times \frac{3x^{2}+4x-11-3x\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}+\left(4x+4\right)\times 5=9x^{2}+43x+8
Budući da \frac{3x^{2}+4x-11}{\left(x-2\right)\left(x+1\right)} i \frac{3x\left(x-2\right)}{\left(x-2\right)\left(x+1\right)} imaju isti nazivnik, oduzmite ih oduzimanje njihovih brojnika.
\left(x^{3}+2x^{2}-5x-6\right)\times \frac{3x^{2}+4x-11-3x^{2}+6x}{\left(x-2\right)\left(x+1\right)}+\left(4x+4\right)\times 5=9x^{2}+43x+8
Pomnožite izraz 3x^{2}+4x-11-3x\left(x-2\right).
\left(x^{3}+2x^{2}-5x-6\right)\times \frac{10x-11}{\left(x-2\right)\left(x+1\right)}+\left(4x+4\right)\times 5=9x^{2}+43x+8
Kombinirajte slične izraze u 3x^{2}+4x-11-3x^{2}+6x.
\frac{\left(x^{3}+2x^{2}-5x-6\right)\left(10x-11\right)}{\left(x-2\right)\left(x+1\right)}+\left(4x+4\right)\times 5=9x^{2}+43x+8
Izrazite \left(x^{3}+2x^{2}-5x-6\right)\times \frac{10x-11}{\left(x-2\right)\left(x+1\right)} kao jedan razlomak.
\frac{\left(x^{3}+2x^{2}-5x-6\right)\left(10x-11\right)}{\left(x-2\right)\left(x+1\right)}+20x+20=9x^{2}+43x+8
Koristite svojstvo distributivnosti da biste pomnožili 4x+4 s 5.
\frac{\left(x^{3}+2x^{2}-5x-6\right)\left(10x-11\right)}{\left(x-2\right)\left(x+1\right)}+\frac{\left(20x+20\right)\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=9x^{2}+43x+8
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Pomnožite 20x+20 i \frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}.
\frac{\left(x^{3}+2x^{2}-5x-6\right)\left(10x-11\right)+\left(20x+20\right)\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=9x^{2}+43x+8
Budući da \frac{\left(x^{3}+2x^{2}-5x-6\right)\left(10x-11\right)}{\left(x-2\right)\left(x+1\right)} i \frac{\left(20x+20\right)\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} imaju isti nazivnik, zbrojite ih zbrajanjem njihovih brojnika.
\frac{10x^{4}-11x^{3}+20x^{3}-22x^{2}-50x^{2}+55x-60x+66+20x^{3}-20x^{2}-40x+20x^{2}-20x-40}{\left(x-2\right)\left(x+1\right)}=9x^{2}+43x+8
Pomnožite izraz \left(x^{3}+2x^{2}-5x-6\right)\left(10x-11\right)+\left(20x+20\right)\left(x-2\right)\left(x+1\right).
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}=9x^{2}+43x+8
Kombinirajte slične izraze u 10x^{4}-11x^{3}+20x^{3}-22x^{2}-50x^{2}+55x-60x+66+20x^{3}-20x^{2}-40x+20x^{2}-20x-40.
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26}{x^{2}-x-2}=9x^{2}+43x+8
Koristite svojstvo distributivnosti da biste pomnožili x-2 s x+1 i kombinirali slične izraze.
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26}{x^{2}-x-2}-9x^{2}=43x+8
Oduzmite 9x^{2} od obiju strana.
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}-9x^{2}=43x+8
Rastavite x^{2}-x-2 na faktore.
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}+\frac{-9x^{2}\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=43x+8
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Pomnožite -9x^{2} i \frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}.
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26-9x^{2}\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=43x+8
Budući da \frac{10x^{4}+29x^{3}-72x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)} i \frac{-9x^{2}\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} imaju isti nazivnik, zbrojite ih zbrajanjem njihovih brojnika.
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26-9x^{4}-9x^{3}+18x^{3}+18x^{2}}{\left(x-2\right)\left(x+1\right)}=43x+8
Pomnožite izraz 10x^{4}+29x^{3}-72x^{2}-65x+26-9x^{2}\left(x-2\right)\left(x+1\right).
\frac{x^{4}+38x^{3}-54x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}=43x+8
Kombinirajte slične izraze u 10x^{4}+29x^{3}-72x^{2}-65x+26-9x^{4}-9x^{3}+18x^{3}+18x^{2}.
\frac{x^{4}+38x^{3}-54x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}-43x=8
Oduzmite 43x od obiju strana.
\frac{x^{4}+38x^{3}-54x^{2}-65x+26}{x^{2}-x-2}-43x=8
Koristite svojstvo distributivnosti da biste pomnožili x-2 s x+1 i kombinirali slične izraze.
\frac{x^{4}+38x^{3}-54x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}-43x=8
Rastavite x^{2}-x-2 na faktore.
\frac{x^{4}+38x^{3}-54x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}+\frac{-43x\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=8
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Pomnožite -43x i \frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}.
\frac{x^{4}+38x^{3}-54x^{2}-65x+26-43x\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=8
Budući da \frac{x^{4}+38x^{3}-54x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)} i \frac{-43x\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} imaju isti nazivnik, zbrojite ih zbrajanjem njihovih brojnika.
\frac{x^{4}+38x^{3}-54x^{2}-65x+26-43x^{3}-43x^{2}+86x^{2}+86x}{\left(x-2\right)\left(x+1\right)}=8
Pomnožite izraz x^{4}+38x^{3}-54x^{2}-65x+26-43x\left(x-2\right)\left(x+1\right).
\frac{x^{4}-5x^{3}-11x^{2}+21x+26}{\left(x-2\right)\left(x+1\right)}=8
Kombinirajte slične izraze u x^{4}+38x^{3}-54x^{2}-65x+26-43x^{3}-43x^{2}+86x^{2}+86x.
\frac{x^{4}-5x^{3}-11x^{2}+21x+26}{\left(x-2\right)\left(x+1\right)}-8=0
Oduzmite 8 od obiju strana.
\frac{x^{4}-5x^{3}-11x^{2}+21x+26}{x^{2}-x-2}-8=0
Koristite svojstvo distributivnosti da biste pomnožili x-2 s x+1 i kombinirali slične izraze.
\frac{x^{4}-5x^{3}-11x^{2}+21x+26}{\left(x-2\right)\left(x+1\right)}-8=0
Rastavite x^{2}-x-2 na faktore.
\frac{x^{4}-5x^{3}-11x^{2}+21x+26}{\left(x-2\right)\left(x+1\right)}-\frac{8\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=0
Da biste zbrojili ili oduzeli izraze, proširite ih da bi imali iste nazivnike. Pomnožite 8 i \frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}.
\frac{x^{4}-5x^{3}-11x^{2}+21x+26-8\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=0
Budući da \frac{x^{4}-5x^{3}-11x^{2}+21x+26}{\left(x-2\right)\left(x+1\right)} i \frac{8\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} imaju isti nazivnik, oduzmite ih oduzimanje njihovih brojnika.
\frac{x^{4}-5x^{3}-11x^{2}+21x+26-8x^{2}-8x+16x+16}{\left(x-2\right)\left(x+1\right)}=0
Pomnožite izraz x^{4}-5x^{3}-11x^{2}+21x+26-8\left(x-2\right)\left(x+1\right).
\frac{x^{4}-5x^{3}-19x^{2}+29x+42}{\left(x-2\right)\left(x+1\right)}=0
Kombinirajte slične izraze u x^{4}-5x^{3}-11x^{2}+21x+26-8x^{2}-8x+16x+16.
x^{4}-5x^{3}-19x^{2}+29x+42=0
Varijabla x ne može biti jednaka vrijednostima -1,2 jer nije definirano dijeljenje nulom. Pomnožite obje strane jednadžbe s \left(x-2\right)\left(x+1\right).
±42,±21,±14,±7,±6,±3,±2,±1
Prema teoremu racionalnog korijena, svi racionalni korijeni polinomijalnog oblika su u obliku \frac{p}{q}, gdje p dijeli konstantni termin 42 i q dijeli glavni koeficijent 1. Navedite sve kandidate \frac{p}{q}.
x=-1
Pronađite takav korijen tako da isprobate sve cjelobrojne vrijednosti, počevši od najmanje apsolutne vrijednosti. Ako se ne pronađu cjelobrojni korijeni, pokušajte s razlomcima.
x^{3}-6x^{2}-13x+42=0
Faktor teorem, x-k je faktor polinoma za svaki korijenski k. Podijelite x^{4}-5x^{3}-19x^{2}+29x+42 s x+1 da biste dobili x^{3}-6x^{2}-13x+42. Riješite jednadžbu u kojoj rezultat odgovara 0.
±42,±21,±14,±7,±6,±3,±2,±1
Prema teoremu racionalnog korijena, svi racionalni korijeni polinomijalnog oblika su u obliku \frac{p}{q}, gdje p dijeli konstantni termin 42 i q dijeli glavni koeficijent 1. Navedite sve kandidate \frac{p}{q}.
x=2
Pronađite takav korijen tako da isprobate sve cjelobrojne vrijednosti, počevši od najmanje apsolutne vrijednosti. Ako se ne pronađu cjelobrojni korijeni, pokušajte s razlomcima.
x^{2}-4x-21=0
Faktor teorem, x-k je faktor polinoma za svaki korijenski k. Podijelite x^{3}-6x^{2}-13x+42 s x-2 da biste dobili x^{2}-4x-21. Riješite jednadžbu u kojoj rezultat odgovara 0.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 1\left(-21\right)}}{2}
Sve jednadžbe oblika ax^{2}+bx+c=0 mogu se riješiti pomoću kvadratne formule: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. U kvadratnoj formuli zamijenite 1 s a, -4 s b i -21 s c.
x=\frac{4±10}{2}
Izračunajte.
x=-3 x=7
Riješite jednadžbu x^{2}-4x-21=0 kad je ± plus i kad je ± minus.
x=7
Uklonite vrijednosti na kojima varijabla ne može biti jednaka.
x=-1 x=2 x=-3 x=7
Navedi sva pronađena rješenja.
x=7
Varijabla x ne može biti jednaka vrijednostima -1,2,-3.
Primjerima
Kvadratna jednadžba
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrija
4 \sin \theta \cos \theta = 2 \sin \theta
Linearna jednadžba
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Istovremena jednadžba
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencijacija
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integracija
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}