Prijeđi na glavni sadržaj
Izračunaj
Tick mark Image

Slični problemi iz pretraživanja weba

Dijeliti

\int _{122}^{328}\left(2-\left(x^{2}-4x+4\right)\right)^{2}-\left(2-0\times 5\right)^{2}\mathrm{d}x
Upotrijebite binomni teorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} da biste proširili \left(x-2\right)^{2}.
\int _{122}^{328}\left(2-x^{2}+4x-4\right)^{2}-\left(2-0\times 5\right)^{2}\mathrm{d}x
Da biste pronašli suprotnu vrijednost izraza x^{2}-4x+4, pronađite suprotnu verziju svakog člana.
\int _{122}^{328}\left(-2-x^{2}+4x\right)^{2}-\left(2-0\times 5\right)^{2}\mathrm{d}x
Oduzmite 4 od 2 da biste dobili -2.
\int _{122}^{328}x^{4}-8x^{3}+20x^{2}-16x+4-\left(2-0\times 5\right)^{2}\mathrm{d}x
Kvadrirajte -2-x^{2}+4x.
\int _{122}^{328}x^{4}-8x^{3}+20x^{2}-16x+4-\left(2-0\right)^{2}\mathrm{d}x
Pomnožite 0 i 5 da biste dobili 0.
\int _{122}^{328}x^{4}-8x^{3}+20x^{2}-16x+4-2^{2}\mathrm{d}x
Oduzmite 0 od 2 da biste dobili 2.
\int _{122}^{328}x^{4}-8x^{3}+20x^{2}-16x+4-4\mathrm{d}x
Izračunajte koliko je 2 na 2 da biste dobili 4.
\int _{122}^{328}x^{4}-8x^{3}+20x^{2}-16x\mathrm{d}x
Oduzmite 4 od 4 da biste dobili 0.
\int x^{4}-8x^{3}+20x^{2}-16x\mathrm{d}x
Prvo procijenite beskonačni integral.
\int x^{4}\mathrm{d}x+\int -8x^{3}\mathrm{d}x+\int 20x^{2}\mathrm{d}x+\int -16x\mathrm{d}x
Integrirajte zbroj termina po terminu.
\int x^{4}\mathrm{d}x-8\int x^{3}\mathrm{d}x+20\int x^{2}\mathrm{d}x-16\int x\mathrm{d}x
Izbacite konstantu u svakom od izraza.
\frac{x^{5}}{5}-8\int x^{3}\mathrm{d}x+20\int x^{2}\mathrm{d}x-16\int x\mathrm{d}x
Od \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} za k\neq -1, zamijenite \int x^{4}\mathrm{d}x s \frac{x^{5}}{5}.
\frac{x^{5}}{5}-2x^{4}+20\int x^{2}\mathrm{d}x-16\int x\mathrm{d}x
Od \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} za k\neq -1, zamijenite \int x^{3}\mathrm{d}x s \frac{x^{4}}{4}. Pomnožite -8 i \frac{x^{4}}{4}.
\frac{x^{5}}{5}-2x^{4}+\frac{20x^{3}}{3}-16\int x\mathrm{d}x
Od \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} za k\neq -1, zamijenite \int x^{2}\mathrm{d}x s \frac{x^{3}}{3}. Pomnožite 20 i \frac{x^{3}}{3}.
\frac{x^{5}}{5}-2x^{4}+\frac{20x^{3}}{3}-8x^{2}
Od \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} za k\neq -1, zamijenite \int x\mathrm{d}x s \frac{x^{2}}{2}. Pomnožite -16 i \frac{x^{2}}{2}.
\frac{328^{5}}{5}-2\times 328^{4}+\frac{20}{3}\times 328^{3}-8\times 328^{2}-\left(\frac{122^{5}}{5}-2\times 122^{4}+\frac{20}{3}\times 122^{3}-8\times 122^{2}\right)
Konačni integral je antiderivat izraza izračunatog u gornjoj granici integracije minus antiderivat izračunat u donjoj granici integracije.
\frac{10970799276608}{15}
Pojednostavnite.